Transition-state structural refinement with GRACE and CHARMM: Flexible QM/MM modelling for lactate dehydrogenase

(Note: The full text of this document is currently only available in the PDF Version )

Alexander J. Turner, Vicente Moliner and Ian H. Williams


Abstract

Realistic simulations of chemical reactions require the use not only of methods capable of describing accurately the energy of molecules undergoing bonding changes within a particular chemical environment, but also of methods capable of exploring topographical features of significance on energy hypersurfaces spanning perhaps several thousand degrees of freedom. Hybrid quantum-mechanical/molecular-mechanical techniques show much promise for the first task, but existing computer codes are inadequate for the second. Application of these methods to real chemical problems demands new tools for location and characterisation of saddle-points, intrinsic reaction coordinates, hessians and vibrational frequencies for very large flexible systems. Algorithms capable of performing these tasks have been incorporated in a new software package, GRACE, which provides a non-invasive interface between popular codes for quantum chemistry and molecular dynamics and modelling. Transition structures (TSs) have been refined by this novel procedure, using a combined AM1/CHARMM24/TIP3P potential, involving full gradient relaxation of the positions of 1900–2000 atoms of a solvated enzyme–substrate complex (lactate dehydrogenase/NADH/pyruvate/water). Six different starting structures (arbitrarily selected from a molecular dynamics trajectory for the enzyme–substrate complex) lead to six different TSs. Although the essential features of these TSs are invariant, the relative dispositions of active-site residues differ quite significantly. The transition state for the enzymic reaction would represent an average of the properties of many, nearly degenerate TSs. This insight emerges only as a consequence of the flexible model of the active site employed in this study.


References

  1. A. Warshel and M. Levitt, J. Mol. Biol., 1976, 103, 227 CAS.
  2. U. C. Singh and P. A. Kollman, J. Comput. Chem., 1986, 7, 718 CrossRef CAS.
  3. M. J. Field, P. A. Bash and M. Karplus, J. Comput. Chem., 1990, 11, 700 CrossRef CAS.
  4. (a) F. Maseras and K. Morokuma, J. Comput. Chem., 1995, 16, 1170 CrossRef CAS; (b) M. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber and K. Morokuma, J. Phys. Chem., 1996, 100, 19357 CrossRef CAS.
  5. V. Moliner, A. J. Turner and I. H. Williams, J. Chem. Soc., Chem. Commun., 1997, 1271 RSC.
  6. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan and M. Karplus, J. Comput. Chem., 1983, 4, 187 CrossRef CAS; CHARMM24b2, M. Karplus Harvard University, 1996.
  7. B. Paizs, G. Fogarasi and P. Pulay, J. Chem. Phys., 1998, 109, 6571 CrossRef CAS.
  8. J. Baker, J. Comput. Chem., 1986, 7, 385 CrossRef CAS.
  9. S. F. Fischer and M. Karplus, Chem. Phys. Lett., 1992, 194, 252 CrossRef CAS.
  10. M. J. D. Powell, Math. Programming, 1971, 1, 26 Search PubMed.
  11. P. Culot, G. Dive, V. H. Nguyen and J. M. Ghuysen, Theoret. Chim. Acta, 1992, 82, 189 CAS.
  12. F. Jensen, in MOPAC93 Manual, J. J. P. Stewart, Fujitsu Limited, Tokyo, Japan, 1993 Search PubMed; J. J. P. Stewart, MOPAC 7, (QCPE 455 7.0), Quantum Chem. Program Exch. Bull., 1993, 13, 42 Search PubMed.
  13. D. C. Liu and J. Nocedal, Math. Progamming, 1989, 45, 503 Search PubMed.
  14. M. J. D. Powell, Math. Programming, 1977, 12, 241 Search PubMed.
  15. T. R. Dafforn, I. G. Badcoe, R. B. Sessions, A. S. El Hawrani and J. J. Holbrook, Proteins: Struct. Funct. Genet., 1997, 29, 228 CrossRef CAS.
  16. D. B. Wigley, S. J. Gamblin, S. P. Turkenburg, E. J. Dodson, K. Piontek, H. Muirhead and J. J. Holbrook, J. Mol. Biol., 1992, 223, 317 CrossRef CAS.
  17. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902 CrossRef.
  18. J. J. Pavelites, J. Gao, P. A. Bash and A. D. Mackerell, J. Comput. Chem., 1997, 18, 221 CrossRef CAS.
  19. A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin and M. Karplus, J. Phys. Chem. B, 1998, 102, 3586 CrossRef CAS.
  20. C. L. Brooks and M. Karplus, J. Mol. Biol., 1989, 208, 159 CAS.
  21. S. Nakagawa, A. H. Yu, M. Karplus and H. Umeyama, Proteins, 1993, 16, 172 CAS.
  22. J. Andrés, V. Moliner, J. Krechl and E. Silla, J. Chem. Soc., Perkin Trans. 2, 1995, 1551 RSC.
  23. M. W. Schmidt, M. S. Gordon and M. Dupuis, J. Am. Chem. Soc., 1985, 107, 2585 CrossRef CAS; J. J. P. Stewart, MOPAC 7, (QCPE 4557.0), Quantum Chem. Program Exch. Bull., 1993, 13, 42 Search PubMed.
  24. I. H. Williams, Chem. Phys. Lett., 1982, 88, 462 CrossRef CAS; J. Mol. Struct.: THEOCHEM, 1983, 11, 275 Search PubMed.
  25. C. A. Coleman, J. G. Rose and C. J. Murray, J. Am. Chem. Soc., 1992, 114, 9755 CrossRef CAS.
  26. A. R. Clarke and T. R. Dafforn, personal communication. Measurements at 20 °C in 50 mM bis-tris buffer at pH 6.0 with 5 mM fructose-1,6-bisphosphate.
  27. J. Wilkie and I. H. Williams, J. Chem. Soc., Perkin Trans. 2, 1995, 1559 RSC.
  28. J. A. Barnes and I. H. Williams, J. Chem. Soc., Chem. Commun., 1996, 193 RSC.
  29. S. Ranganathan and J. E. Gready, J. Phys. Chem. B, 1997, 101, 5614 CrossRef CAS.
  30. P. G. Bolhuis, C. Dellago and D. Chandler, Faraday Discuss., 1998, 110, paper 110/23 Search PubMed.
  31. (a) Q. Xue and E. S. Yeung, Nature, 1995, 373, 681 CAS; (b) W. Tan and E. S. Yeung, Anal. Chem., 1997, 69, 4242 CrossRef CAS.
  32. J. K. Ousterhout, TCL and TK toolkit, Addison Wesley, 1994 Search PubMed.
  33. R. D. Amos, CADPAC: The Cambridge Analytical Derivatives Package, Issue 6, Cambridge, 1995; with contributions from I. L. Alberts, J. S. Andrews, S. M. Colwell, N. C. Handy, D. Jayatilaka, P. J. Knowles, R. Kobayashi, K. E. Laidig, G. Laming, A. M. Lee, P. E. Maslen, C. W. Murray, J. E. Rice, E. D. Simandiras, A. J. Stone, M.-D. Su and D. J. Tozer Search PubMed.
  34. GAMESS-UK is a package of ab initio programs written by M. F. Guest, J. H. van Lenthe, K. Schoffel, P. Sherwood and R. J. Harrison, Daresbury Laboratory, 1995–1997, with contributions from R. D. Amos, R. J. Buenker, M. Dupuis, N. C. Handy, I. H. Hilliere, P. J. Knowles, V. Bonacic-Koutecky, W. von Niessen, V. R. Saunders and A. J. Stone. The package is derived from the original GAMESS code due to M. Dupuis, D. Spangler, J. Wendoloski.
  35. R. Sayle, RasMol v2.5: A Molecular Visualisation Program, Biomolecular Structure, Glaxo Research and Development, Greenford, Middlesex, UK Search PubMed.
  36. Xmol version 1.3.1, Minnesota Supercomputer Center Inc..
Click here to see how this site uses Cookies. View our privacy policy here.