What makes the solubilization of water in reversed micelles exothermic or endothermic? A titration calorimetry investigation

(Note: The full text of this document is currently only available in the PDF Version )

Xinghai Shen, Hongcheng Gao and Xiangyang Wang


Abstract

Thermal effects of the solubilization of water in reversed micelles based on sodium (or potassium, ammonium) bis(2-ethylhexyl)phosphate (1a, 1b, 1c), potassium 2-ethylhexyl mono(2-ethylhexyl)phosphate (2a), and sodium bis(2-ethylhexyl)sulfosuccinate (AOT) have been investigated by titration calorimetry. It was found that the overall reaction is exothermic for the reversed micelles of 1a, 1b, and 2a, while it is endothermic for the reversed micelle of 1c. The influences of Ni2+ and urea on the molar enthalpy (ΔHm) of the solubilization of water have also been studied. The ΔHm value is reduced significantly by the presence of 0.1 M Ni2+, while it increases again on going from 0.1 to 0.2 M Ni2+. The ΔHm value decreases with increasing urea concentration in the reversed micelles of both 2a and AOT. Using a method in which the total molar enthalpy [ΔHm(T)] is correlated to the molar ratio of water to surfactant (R), the molar enthalpies of bound (ΔHB) and free (ΔHF) water, and the maximum number of water molecules that can bond to a surfactant molecule (NB) have been obtained. Both the qualitative and quantitative results reveal that the following three thermal effects are involved in the solubilization of water in reversed micelles: (1) an endothermic effect due to the breaking of the hydrogen-bonded network in bulk water (effect 1); (2) an exothermic effect arising from the interactions of water with the counterion and other head groups of the surfactant (effect 2) and (3) an endothermic effect due to the expansion or the dismantling of the quasi-lattice between the counterion and the anion of the surfactant (effect 3). For the AOT-based reversed micelle, effects 1–3 cannot totally explain its overall endothermicity. Thus, some special reasons have also been proposed to account for the "‘unusual’' thermal behaviour of the AOT system.


References

  1. L. M. Prince, Microemulsion, Academic Press, New York, 1977 Search PubMed.
  2. R. L. Reed and R. N. Healy, in Improved Oil Recovery by Surfactant and Polymer Flooding, ed. D. O. Shah and R. S. Schechter, Academic Press, New York, 1977, p. 383 Search PubMed.
  3. M. P. Pileni, Structure and Reactivity in Reverse Micelles, Elsevier, Amsterdam, 1989 Search PubMed.
  4. M. J. Lawrence, Curr. Opin. Colloid Interface Sci., 1996, 1, 826 CAS.
  5. J. H. Fendler, Membrane Mimetic Chemistry, Wiley Interscience, New York, 1982 Search PubMed.
  6. (a) K. Osseo-Asare, Adv. Colloid Interface Sci., 1991, 37, 123 CrossRef CAS; (b) K. Osseo-Asare, Colloid Sci., 1990, 50, 373 Search PubMed.
  7. T. A. Hatton, in Surfactant-based Processes, ed. J. M. Scamehorn and J. H. Horwell, Marcel Dekker, New York, 1989, vol. 33, p. 55 Search PubMed.
  8. J. Eastoe and B. Warne, Curr. Opin. Colloid Interface Sci., 1996, 1, 800 CAS.
  9. (a) R. Leung and D. O. Shah, J. Colloid Interface Sci., 1987, 120, 320 CrossRef; (b) R. Leung and D. O. Shah, J. Colloid Interface Sci., 1987, 120, 330 CrossRef.
  10. M. Belletete, M. Lachapelle and G. Durocher, J. Phys. Chem., 1990, 94, 5337 CrossRef CAS.
  11. P. E. Zinsli, J. Phys. Chem., 1979, 83, 3223 CAS.
  12. M. Wong, J. K. Thomas and T. Nowak, J. Am. Chem. Soc., 1977, 99, 4730 CrossRef CAS.
  13. H. Hauser, G. Haering, A. Pande and P. L. Luisi, J. Phys. Chem., 1989, 93, 7869 CrossRef CAS.
  14. C. A. Martin and L. J. Magid, J. Phys. Chem., 1981, 85, 3938 CrossRef CAS.
  15. A. Maitra, J. Phys. Chem., 1984, 88, 5122 CrossRef CAS.
  16. T. K. Jain, M. Varshney and A. Maitra, J. Phys. Chem., 1989, 93, 7409 CrossRef CAS.
  17. A. D'Aprano, A. Lizzio, V. Turco Liveri, F. Aliotta, C. Vasi and P. Migliardo, J. Phys. Chem., 1988, 92, 4436 CrossRef.
  18. C. Boned, J. Peyrelasse and M. Moha-Ouchanne, J. Phys. Chem., 1986, 90, 634 CrossRef CAS.
  19. A. D'Aprano, A. Lizzio and V. Turco Liveri, J. Phys. Chem., 1987, 91, 4749 CrossRef CAS.
  20. A. Goto, H. Yoshioka, H. Kishimoto and T. Fujita, Thermochim. Acta., 1990, 163, 139 CrossRef CAS.
  21. A. Goto, H. Yoshioka, H. Kishimoto and T. Fujita, Langmuir, 1992, 8, 441 CrossRef CAS.
  22. A. Goto, S. Harada, T. Fujita, Y. Miwa, H. Yoshioka and H. Kishimoto, Lagmuir, 1993, 9, 86 Search PubMed.
  23. G. Haandrikman, G. J. R. Daane, F. J. M. Kerhof, N. M. vas Os and L. A. M. Rupert, J. Phys. Chem., 1992, 96, 9061 CrossRef CAS.
  24. I. Dzidic and P. Kebarle, J. Phys. Chem., 1970, 74, 1466 CrossRef CAS.
  25. W. A. P. Luck, in The Hydrogen Bond, ed. P. Schuster, G. Zundel and C. Sandorfy, North Holland, Amsterdam, 1976, vol. 3 Search PubMed.
  26. H.-F. Eiche and H. Christen, Helv. Chim. Acta, 1978, 61, 2258 CAS.
  27. G. Gu, W. Wang and H. Yan, J. Colloid Interface Sci., 1994, 167, 87 CrossRef CAS.
  28. X. Shen, Ph.D Dissertation, Peking University, P. R. China, 1993.
  29. (a) Q. Li, S. Weng, J. Wu and N. Zhou, J. Phys. Chem. B, 1998, 102, 3168 CrossRef CAS; (b) Q. Li, Ph.D Dissertation, Peking University, P. R. China, 1998.
  30. (a) C. K. Wu, H. C. Kao and T. Chen, Proc. Int. Solvent Extraction Conf., 1980, 80, 80 Search PubMed; (b) J. Wu, H. Gao and N. Shi, Proc. Int. Solvent Extraction Conf., 1983, 83, 335 Search PubMed; (c) W. Zhou, H. Gao and N. Shi, 8th Int. Conf. Fourier Transform Spectroscopy, 1991, Mo-A 8, 78 Search PubMed; (d) W. Zhou, H. Gao and N. Shi, 8th Int. Conf. Fourier Transform Spectroscopy, 1991, Mo-A 9, 79 Search PubMed.
  31. (a) R. D. Neuman and S. J. Park, J. Colloid Interface Sci., 1992, 152, 41 CrossRef CAS; (b) Z. Yu and R. D. Neuman, J. Am. Chem. Soc., 1994, 116, 4075 CrossRef CAS; (c) Z. Yu and R. D. Neuman, Langmuir, 1994, 10, 2553 CrossRef CAS; (d) Z. Yu and R. D. Neuman, Langmuir, 1995, 11, 1081 CrossRef CAS.
  32. (a) D. C. Steyler, T. R. Jenta, B. H. Robinson, J. Eastoe and R. K. Heenan, Langmuir, 1996, 12, 1483 CrossRef; (b) A. Shioi, M. Harada and M. Tanabe, Langmuir, 1996, 12, 3201 CrossRef CAS.
  33. X. Shen and and H. Gao, Acta Chim. Sinica (in Chinese), 1991, 49, 656 Search PubMed.
  34. G. Li, Z. Li, Q. Peng, H. Gao, P. Wu and and R. Zheng, Chem. J. Chinese Univ. (in Chinese), 1992, 13, 1102 Search PubMed.
  35. G. Hertz, in Water-A Comprehensive Treatise, ed. F. Franks, Plenum Press, New York, 1975, vol. 3 Search PubMed.
  36. F. H. Florenzano, L. G. C. Santos, I. M. Cuccovia, M. V. Scarpa, H. Chaimovich and M. Politi, Langmuir, 1996, 12, 1166 CrossRef CAS.
  37. T. Asakawa, M. Hashikawa, K. Amada and S. Miyagishi, Langmuir, 1995, 11, 2376 CrossRef CAS.
  38. G. B. Puvvada and D. Blankschtein, J. Phys. Chem., 1991, 95, 8989 CrossRef.
  39. P. Baglioni, E. Rivara-Minten, L. Dei and E. Ferroni, J. Phys. Chem., 1990, 94, 8218 CrossRef CAS.
  40. L. Garcia-Rio, J. R. Leis, J. C. Mejuto and M. E. Pena, Langmuir, 1994, 10, 1676 CrossRef CAS.
  41. (a) C. L. C. Amaral, O. Brino, H. Chaimovich and M. J. Politi, Langmuir, 1992, 8, 2417 CrossRef CAS; (b) C. L. C. Amaral, R. Itri and M. J. Politi, Langmuir, 1996, 12, 4638 CrossRef CAS.
  42. (a) L. A. Godinez, S. Patel, C. M. Criss and A. E. Kaifer, J. Phys. Chem., 1995, 99, 17449 CrossRef CAS; (b) L. A. Godinez, L. Schwartz, C. M. Criss and A. E. Kaifer, J. Phys. Chem. B, 1997, 101, 3376 CrossRef CAS.
  43. X. Shen, M. Belletete and G. Durocher, J. Phys. Chem. B, 1997, 101, 8212 CrossRef.
  44. X. Shen, M. Belletete and G. Durocher, Langmuir, 1997, 13, 5830 CrossRef CAS.
  45. X. Shen, M. Belletete and G. Durocher, J. Phys. Chem. B, 1998, 102, 1877 CrossRef CAS.
  46. J. A. Patridge and R. C. Johnson, J. Inorg. Nucl. Chem., 1969, 31, 2587 CrossRef.
  47. D. B. Wetlaufer, S. K. Malik, L. Stoller and R. L. Coffin, J. Am. Chem. Soc., 1964, 86, 508 CrossRef CAS.
  48. O. Enea and C. Jolicoeur, J. Phys. Chem., 1982, 86, 3370.
  49. (a) R. A. Kuharski and P. J. Rosskey, J. Am. Chem. Soc., 1984, 106, 5786 CrossRef; (b) R. A. Kuharski and P. J. Rosskey, J. Am. Chem. Soc., 1984, 106, 5794 CrossRef.
  50. For the microemulsions of 1a, 1b, and 2a, the fits according to eqn. (3) converge well (see Fig. 1B, 2B, and 4B), while those based on eqn. (4) do not. In the case of 1c, however, reasonable NLR results can be obtained when eqn. (4) applies, which are reflected by the good fit in Fig. 3B. On the other hand, the NLR analysis following eqn. (3) has also been tried for the microemulsion of 1c and the ΔHF value was estimated to be –3.57 × 10–3 kJ mol–1 with larger standard error. This ΔHF value is also negative and very small as compared with the ΔHB value (0.392 kJ mol–1). In addition, the ΔHB and B/A values obtained following eqn. (3) and (4) are quite similar. Thus, we believe that for the microemulsion of 1c the molar enthalpy of free water is practically zero.
  51. D. Nguyen and G. L. Bertrand, J. Phys. Chem., 1992, 96, 1994 CrossRef.
  52. A. D'Aprano, A. Lizzio and V. Turco Liveri, J. Phys. Chem., 1988, 92, 1985 CrossRef CAS.
  53. A. N. Maitra and H.-F. Eicke, J. Phys. Chem., 1981, 85, 2687 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.