Structure–functionality relationships of grafted Ti-MCM41 silicas. Spectroscopic and catalytic studies

(Note: The full text of this document is currently only available in the PDF Version )

Leonardo Marchese, Enrica Gianotti, Valeria Dellarocca, Thomas Maschmeyer, Fernando Rey, Salvatore Coluccia and John M. Thomas


Abstract

Detailed spectroscopic measurements have been used to elucidate the nature of Ti(IV)-centred active sites that were anchored to a mesoporous silica surface (MCM41) by two distinct routes from titanocene precursors. The catalyst prepared in dry argon (Ti-MCM41 [Ar]) is more active than that prepared in air (in the presence of water vapour) in its activity in the epoxidation of cyclohexene with tert-butylhydroperoxide (TBHP). The degree of loading of the titanium onto the silica support also influences the precise nature of the active sites. In Ti-MCM41 [Ar] samples containing less that 2 wt.% of Ti, the most abundant species are tetrahedrally bonded Ti(IV) active sites which absorb at 210–230 nm in diffuse reflectance (DR) UV–Vis spectra and exhibit an emission at 430 and 490 nm when excited with a 250 nm light. Samples of catalyst with greater than 4 wt.% loading are shown to contain TiO2-like microclusters. These species absorb at λ[greater than or equal, slant]250 nm in the DR UV–Vis and emit very weakly in the 500–600 nm region. In the case of Ti-MCM41 [air] catalysts, which were prepared in the presence of atmospheric water at the MCM41 surface, even at the lowest Ti loading (e.g. ⩽0.5%) an incipient formation of oligomers occurs. It is proposed that dimers or very small oligomers which absorb at around 250 nm in the DR spectra are responsible for a very strong emission at around 500 nm in the photoluminescence spectra. The abundant presence of these species might well explain the lower catalytic performance of Ti-MCM41 [air] in comparison with that of Ti-MCM41 [Ar]. The anchoring of the Ti species at the surface silanol groups of MCM41 was in all cases followed by FTIR spectroscopy.


References

  1. M. Taramasso, G. Perego and B. Notari, U.S. Pat. 4410501, 1983.
  2. B. Notari, Adv. Catal., 1996, 41, 252; J. M. Thomas, Philos. Trans. R. Soc., 1990, A333, 173 Search PubMed; see also Nature (London), 1994, 368, 289 Search PubMed.
  3. T. Maschmeyer, F. Rey, G. Sankar and J. M. Thomas, Nature (London), 1995, 378, 159 CrossRef CAS.
  4. P. Sinclair, G. Sankar, C. R. A. Catlow, J. M. Thomas and T. Maschmeyer, J. Phys. Chem. B, 1997, 101, 4232 CrossRef CAS.
  5. (a) M. R. Boccuti, K. M. Rao, A. Zecchina, G. Leofanti and G. Petrini, Stud. Surf. Sci. Catal., 1989, 48, 133; (b) F. Geobaldo, S. Bordiga, A. Zecchina, E. Giamello, G. Leofanti and G. Petrini, Catal. Lett., 1992, 16, 109 CrossRef CAS.
  6. S. Bordiga, S. Coluccia, C. Lamberti, L. Marchese, A. Zecchina, F. Boscherini, F. Buffa, F. Genoni, G. Leofanti, G. Petrini and G. Vlaic, J. Phys. Chem., 1994, 98, 4125 CrossRef CAS.
  7. L. Le Noc, D. Trong On, S. Solomykina, B. Echchahed, F. Beland, C. Cartier dit Moulin and L. Bonneviot, Stud. Surf. Sci. Catal., 1996, 101, 611 CAS.
  8. H. C. L. Abbenhuis, S. Krijnen and R. A. van Santen, J. Chem. Soc., Chem. Commun., 1997, 331 RSC.
  9. F. Rey, G. Sankar, T. Maschmeyer, J. M. Thomas, R. G. Bell and G. N. Greaves, Top. Catal., 1996, 3, 121 CAS.
  10. (a) C. K. Jørgensen, Prog. Inorg. Chem., 1970, 12, 101; (b) J. A. Duffy, J. Chem. Soc., Dalton Trans., 1983, 1475 RSC.
  11. (a) S. Klein, B. M. Weckhuysen, J. A. Martens, W. F. Maier and P. A. Jacobs, J. Catal., 1996, 163, 489 CrossRef CAS; (b) J. Klaas, G. Schulz-Ekloff and N. I. Jaeger, J. Phys. Chem. B, 1997, 101, 1305 CrossRef CAS.
  12. L. Marchese, E. Gianotti, T. Maschmeyer, G. Martra, S. Coluccia and J. M. Thomas, Il Nuovo Cimento, 1997, 19D, 1707 Search PubMed.
  13. M. Anpo, N. Aikawa, Y. Kubokawa, M. Che, C. Louis and E. Giamello, J. Phys. Chem., 1985, 89, 5017 CrossRef CAS.
  14. H. Yamashita, Y. Ichihashi, M. Anpo, M. Hashimoto, C. Louis and M. Che, J. Phys. Chem., 1996, 100, 16041 CrossRef CAS and references therein.
  15. S. G. Zhang, Y. Ichihashi, H. Yamashita, T. Tatsumi and M. Anpo, Chem. Lett., 1996, 895 CAS; Y. Ichihashi, H. Yamashita, M. Anpo, Y. Souma and Y. Matsumura, Catal. Lett., 1998, 53, 107 CrossRef CAS.
  16. A. Zecchina, G. Spoto, S. Bordiga, A. Ferrero, G. Petrini, G. Leofanti and M. Padovan, Stud. Surf. Sci. Catal., 1991, 69, 251.
  17. L. Marchese, T. Maschmeyer, E. Gianotti, S. Coluccia and J. M. Thomas, J. Phys. Chem. B, 1997, 101, 8836 CrossRef CAS.
  18. A. J. M. de Man and J. Sauer, J. Phys. Chem., 1996, 100, 5025 CrossRef CAS.
  19. T. Maschmeyer, G. Sankar and J. M. Thomas, unpublished results.
  20. C. Lamberti, S. Bordiga, D. Arduino, A. Zecchina, F. Geobaldo, G. Spanò, F. Genoni, G. Petrini, A. Carati, F. Villain and G. Vlaic, J. Phys. Chem., 1998, 102, 6382 Search PubMed.
  21. S. Coluccia and L. Marchese, Proceedings of the International Symposium on Acid–base Catalysis, Sapporo, Nov 28th–Dec 1st, 1988, ed. K. Tanabe, H. Hattori, T. Yamaguchi and T. Tanaka, Kodansha, Tokyo, 1989 Search PubMed.
  22. (a) S. Monticone, R. Tufeu and A. V. Kanaev, Chem. Phys. Lett., 1998, 295, 237 CrossRef CAS; (b) N. Serpone, D. Lawless and R. Khairutdinov, J. Phys. Chem., 1995, 99, 16646 CrossRef CAS.
  23. L. Marchese, E. Gianotti, S. Coluccia, T. Maschmeyer and J. M. Thomas, Proceedings of the SHHC-9 International Symposium, Southampton, UK 20–24th July, 1998 Search PubMed.
  24. M. Raimondi, L. Marchese, E. Gianotti, T. Maschmeyer, J. M. Seddon and S. Coluccia, J. Chem. Soc., Chem. Commun., in the press Search PubMed.
  25. A. Corma, M. Domine, J. A. Gaona, J. L. Jordá, M. T. Navarro, F. Rey, J. Pérez-Pariente, J. Tsuji, B. McCulloch and L. T. Nerneth, J. Chem. Soc., Chem. Commun., 1998, 2211 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.