Nanosized effects in composites based on polyaniline and vanadium or iron oxides

(Note: The full text of this document is currently only available in the PDF Version )

Vitaly D. Pokhodenko, Vasily A. Krylov, Yaroslav I. Kurys and Oleg Yu. Posudievsky


Abstract

It has been established by means of elemental analysis, X-ray diffraction, IR and optical spectroscopies, cyclic voltammetry and EPR that, due to the nanostructure, the composites based on polyaniline (PAn) and on vanadium or iron oxides display consistent specific spectral, electrochemical, magnetic properties which are associated with intermolecular interaction with charge transfer between conducting polymer and inorganic component of the composites and with formation of the united electronic system. The nanosized effects in both composites explored possess similarity as well as distinctions. While in the PAn–V2O5 nanocomposite direct interaction of the polyaniline macromolecules, intercalated in the V2O5 galleries, with V5+ ions takes place, resulting in charge transfer, the charge transfer between polyaniline and Fe3O4 particles of the PAn–Fe3O4 nanocomposite is motivated by the fact that during the synthesis of the composite the Fe3O4 particles in the starting sol and in the reaction medium carry a certain surface charge which they retain in the composite, thus acting as peculiar extra dopants for macromolecules of the conducting polymer.


References

  1. G. G. Wallace, G. M. Spinks and P. R. Teasdale, Conductive Electroactive Polymers: Intelligent Materials Systems, Technomic Publications, Lancaster, PA, 1996 Search PubMed.
  2. E. Ruiz-Hitzky, Adv. Mater., 1993, 5, 334 CrossRef CAS.
  3. M. G. Kanatzidis, C.-G. Wu, H. O. Marcy and C. R. Kannewurf, J. Am. Chem. Soc., 1989, 111, 4139 CrossRef CAS.
  4. V. D. Pokhodenko and V. S. Krylov, Synth. Met., 1991, 41–43, 533 CrossRef.
  5. J. S. Miller, Adv. Mater., 1993, 5, 587 CrossRef.
  6. V. D. Pokhodenko, V. A. Krylov and Ya. I. Kurys, Theor. Exp. Chem. (Engl. Transl.), 1995, 31, 361 Search PubMed.
  7. O. Yu. Posudievsky and V. D. Pokhodenko, Theor. Exp. Chem. (Engl. Transl.), 1996, 32, 243 Search PubMed.
  8. R. Massart and V. Cabuil, J. Chim. Phys., 1987, 84, 967 CAS.
  9. L. I. Mirkin, Handbook on X-Ray Structural Analysis of Polycrystals, Fizmatgiz, Moscow, 1961(in Russian) Search PubMed.
  10. D. F. Warren, J. A. Walker, D. P. Anderson, C. G. Rhodes and L. J. Buckley, J. Electrochem. Soc., 1989, 136, 2286.
  11. A. Carrington and A. D. McLachlan, Introduction of Magnetic Resonance with Application to Chemistry and Chemical Physics, Harper & Row Publications, New York, 1967 Search PubMed.
  12. S. S. Borovik, A. S. Mil'ner and V. V. Eremenko, Lectures on Magnetism, Khar'kov University Publications, Khar'kov, 1972(in Russian) Search PubMed.
  13. Ch. Kittel, Introduction to Solid State Physics, J. Wiley & Sons, New York, 1975 Search PubMed.
  14. M. G. Kanatzidis, C.-G. Wu and N. O. Marcy, Chem. Mater., 1990, 2, 222 CrossRef CAS.
  15. S.-A. Chen and L.-C. Lin, Adv. Mater., 1995, 7, 473 CrossRef CAS.
  16. A. Connel, in Amorphous Semiconductors, ed. M. H. Brodsky, Springer-Verlag, Berlin, 1979, ch. 4 Search PubMed.
  17. V. Vonsovsky, Magnetism, Nauka, Moscow, 1971(in Russian) Search PubMed.
  18. A. U. v. d. Giessen, J. Phys. Chem. Solids, 1967, 28, 343 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.