Oscillator phase and the reaction dynamics of HN3: A model for correlated motion

(Note: The full text of this document is currently only available in the PDF Version )

Karin R. Wright and John S. Hutchinson


Abstract

The reaction coordinate for a unimolecular dissociation reaction is intrinsically anharmonic, therefore the period of vibration depends upon the energy in the bond. Consequently, the final few vibrations leading up to and including reaction can occur over very different time scales, depending upon the amount of vibrational energy in the reaction coordinate. In recent studies, we have compared ensembles of reactive trajectories and have observed correlations in molecular motions during reaction leading up to the transition state. If the comparison is made in time, differences in the periods of the reaction coordinate vibration can obscure these correlations. However, if the reactions are compared vibration by vibration (i.e., coherently) clear patterns of vibrational motions emerge in the reaction dynamics. In this paper, we introduce a new application of the Hilbert transform to assign oscillator phases to the motions of anharmonic oscillators, which permits coherent comparison of trajectories. We also demonstrate by several examples that, when compared coherently, reaction dynamics of HN3 exhibit order which is not evident in time series comparisons. These orderly patterns of motions reflect the intramolecular conditions necessary for reaction to occur. We propose a model to account for the observed correlated motion in terms of the requirements for intramolecular energy transfer. As a consequence of the constraints of energy transfer, the phases of several oscillators have clearly defined relative values. Physically this corresponds to a correlation in the vibrations of several modes such that (for example) two key bonds always extend simultaneously during the course of reaction. Since the motions of atoms preceding reaction are not random, but rather follow a specific pattern, a restricted set of reactant states immediately precede reaction.


References

  1. L. G. Spears, Jr. and J. S. Hutchinson, J. Chem. Phys., 1988, 88, 250 CrossRef.
  2. V. Julien, A. Patel, Y. Jones, J. Jiang and J. S. Hutchinson, J. Phys. Chem., 1993, 97, 7011 CrossRef CAS.
  3. J. S. Hutchinson, Adv. Classical Trajectory Methods, 1992, 1, 41 Search PubMed.
  4. J. R. Fair, K. R. Wright and J. S. Hutchinson, J. Phys. Chem., 1995, 99, 14707 CrossRef CAS.
  5. J. S. Hutchinson, in Dynamics of Molecules and Chemical Reactions, ed. R. E. Wyatt and J. Zhang, Marcel-Dekker, New York, 1996, ch 14, p. 561 Search PubMed.
  6. N. De Leon and C. C. Marston, J. Chem. Phys., 1989, 91, 3405 CrossRef CAS.
  7. N. De Leon, M. A. Mehta and R. Q. Topper, J. Chem. Phys., 1991, 94, 8310 CrossRef CAS.
  8. N. De Leon, J. Chem. Phys., 1992, 96, 285 CrossRef CAS.
  9. N. De Leon and S. Ling, J. Chem. Phys., 1994, 101, 4790 CrossRef CAS.
  10. M. H. Alexander, H-J. Werner, T. Hemmer and P. J. Knowles, J. Chem. Phys., 1990, 93, 3307 CrossRef CAS.
  11. B. R. Foy, M. P. Casassa, J. C. Stephenson and D. S. King, J. Chem. Phys., 1988, 89, 608 CrossRef CAS.
  12. E. J. Heller, J. Chem. Phys., 1975, 62, 1544 CrossRef CAS.
  13. H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, MA, 2nd edn., 1980 Search PubMed.
  14. P. D. Spanos and S. M. Miller, J. Appl. Mech. Trans. ASME, 1994, 61, 575 Search PubMed.
  15. K. E. Peiponen, E. M. Vartiainen and T. Asakura, Optik, 1992, 90, 45 Search PubMed.
  16. N. L. Mohan, Geophysics, 1982, 47, 376 Search PubMed.
  17. C. P. Williams and A. G. Marshall, Anal. Chem., 1992, 64, 916 CrossRef CAS.
  18. J. E. Bertie and S. L. L. Zhang, Can. J. Chem., 1992, 70, 520 CAS.
  19. A. J. Marshall, Fourier, Hadamard, and Hilbert Transforms in Chemistry, Plenum Press, New York, 1982 Search PubMed.
  20. D. S. Hagen, J. H. Weiner and B. D. Sykes, Biochemistry, 1979, 18, 2007 CrossRef CAS.
  21. C. P. Poole, Jr., Electron Spin Resonance, Interscience, New York, 1967 Search PubMed.
  22. R. N. Bracewell, The Fourier Transform and its Applications, McGraw Hill, New York, 1978 Search PubMed.
  23. G. Arfken, Mathematical Methods for Physicists, Academic Press, New York, 3rd edn., 1970 Search PubMed.
  24. E. B. Wilson, Jr., J. C. Decius and P. C. Cross, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra, Dover Publications, New York, 1955 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.