New aspect of the mechanism of photocatalytic oxidation of organic compounds by polyoxometalates in aqueous solutions. The selective photooxidation of propan-2-ol to propanone: The role of OH radicals

(Note: The full text of this document is currently only available in the PDF Version )

Athanasios Mylonas, Anastasia Hiskia, Evaggelia Androulaki, Dimitra Dimotikali and Elias Papaconstantinou


Abstract

The excited state of polyoxometalates, (POM) arising from absorption of light at the O→M charge transfer (CT) band (near-VIS and UV light), is a powerful oxidizing reagent. The oxidizing ability is manifested, mainly, through formation of OH radicals arising from the reaction of the excited POM with adsorbed water. The currently accepted mechanism of H-abstraction as the initial reaction of excited POM with organic substrates (mainly alcohols) is modified by addition of one more step that involves the formation of OH radicals which, as is well known, react with organic substrates, mainly alcohols, by H-abstraction. In view of the formation of OH radicals, and the high oxidizing ability of the excited POM, the photochemical selective oxidation of organic substrates, reported so far, in aqueous solutions, should be considered with reservation. Propan-2-ol is, indeed, selectively oxidized to propanone in the presence of PW12O403-. The selectivity is, however, a kinetic phenomenon rather than a thermodynamic one. Both photoreactions, as is the case with numerous other organic compounds, give, as final products, CO2 and H2O.


References

  1. (a) M. T. Pope, in Inorganic Chemistry Concepts, ed. C. K. Jorgensen et al., Springer Verlag, Berlin, 1983, vol. 8 Search PubMed; (b) M. T. Pope and A. Muller, Angew. Chem. Int. Ed., Engl., 1991, 30, 34 CrossRef; (c) V. W. Day and W. G. Klemperer, Science, 1985, 228, 533 CrossRef CAS; (d) Q. Chen and J. Zubieta, Coord. Chem. Rev., 1992, 114, 107 CrossRef CAS.
  2. (a) A. I. Vogel, A Text Book of Quantitative Inorganic Analysis, Wiley, New York, 3rd edn., 1966 Search PubMed; (b) H. Wu, J. Biol. Chem., 1920, 43, 189.
  3. R. J. Cotton, A. M. Guzman and J. W. Rabalais, Acc. Chem. Res., 1978, 11, 170 CrossRef CAS.
  4. J. C. Carls, P. Argitis and A. Heller, J. Electrochem. Soc., 1992, 139, 786 CAS.
  5. (a) T. Okuhara, N. Mizuno and M. Misono, Adv. Catal., 1996, 41, 113 CAS; (b) I. V. Kozhevnikov, Catal. Rev. Sci. Eng., 1995, 37, 311 Search PubMed.
  6. E. Papaconstantinou, Chem. Soc. Rev., 1989, 16, 1 RSC and references therein.
  7. (a) M. Rindl, S. African J. Sci., 1916, 11, 362 Search PubMed; (b) L. Chalkley, J. Phys. Chem., 1952, 56, 1084 CrossRef.
  8. (a) C. L. Hill and C. M. Prosser-McCartha, in Photosensitization and Photocatalysis Using Inorganic and Organometallic Compounds, ed. K. Kalyanasundaram and M. Gratzel, Kluwer, Dordrecht, 1993, vol. 14, pp. 307–330 Search PubMed; (b) T. Yamase and H. Naruke, Coord. Chem. Rev., 1991, 111, 83 CrossRef.
  9. T. Yamase and T. Usami, J. Chem. Soc., Dalton Trans., 1988, 183 RSC.
  10. (a) M. K. Awad and A. B. Anderson, J. Am. Chem. Soc., 1990, 112, 1603 CrossRef CAS; (b) S.-F. Jen, A. B. Anderson and C. L. Hill, J. Phys. Chem., 1992, 96, 5658 CrossRef CAS.
  11. (a) M. T. Pope and G. M. Varga Jr., Inorg. Chem., 1966, 5, 1249 CrossRef CAS; (b) A. Chemseddine, C. Sanchez, J. Livage and M. Fournier, Inorg. Chem., 1984, 23, 2609 CrossRef CAS.
  12. M. A. Fox, R. Cardona and E. Gailard, J. Am. Chem. Soc., 1987, 109, 6347 CrossRef CAS.
  13. (a) M. M. Williamson, D. A. Bouchard and C. L. Hill, Inorg. Chem., 1987, 26, 1436 CrossRef CAS; (b) C. L. Hill, D. A. Bouchard, M. Kadkhodayan, M. M. Williamson, J. A. Schmidt and E. F. Hilinski, J. Am. Chem. Soc., 1988, 110, 5471 CrossRef CAS; (c) C. J. Gomez-Garcia, C. Gimenez-Saiz, S. Triki, E. Coronado, P. Le Magueres, L. Quahab, L. Ducasse, C. Sourisseau and P. Delhaes, Inorg. Chem., 1995, 34, 4139 CrossRef CAS.
  14. H. Einaga and M. Misono, Bull. Chem. Soc. Jpn., 1997, 70, 1551 CAS.
  15. M. D. Ward, J. F. Bradzil and R. K. Grasselli, J. Phys. Chem., 1984, 88, 4210 CrossRef CAS.
  16. E. Papaconstantinou, J. Chem. Soc., Faraday Trans. 1, 1982, 78, 2769 RSC.
  17. (a) A. Mylonas and E. Papaconstantinou, J. Mol. Catal., 1994, 92, 261 CrossRef CAS; (b) A. Mylonas and E. Papaconstantinou, J. Photochem. Photobiol. A, 1996, 94, 77 CrossRef CAS; (c) A. Mylonas, V. Roussis and E. Papaconstantinou, Polyhedron, 1996, 15, 3201 CrossRef; (d) A. Mylonas, A. Hiskia and E. Papaconstantinou, J. Mol. Catal., 1996, 114, 191 Search PubMed.
  18. H. Einaga and M. Misono, Bull. Chem. Soc. Jpn., 1996, 69, 3435 CAS.
  19. (a) T. Yamase, Inorg. Chim. Acta, 1983, 76, L25 CrossRef CAS; (b) T. Yamase and T. Kurozumi, J. Chem. Soc., Dalton Trans., 1983, 2205 RSC.
  20. W. M. Latimer, Oxidation Potentials, Prentice-Hall, Englewood Cliffs, NJ, 2nd edn., 1952, p. 48 Search PubMed.
  21. A. J. Swallow, Prog. React. Kinet., 1978, 9, 195 Search PubMed and references therein.
  22. V. N. Parmon, K. I. Zamaraev, Boroskov Institute of catalysis, Novisibirsk, Russia, as quoted by J. Higgin in Chem. Eng. News, Aug. 5, 1996, p. 28 Search PubMed.
  23. A. Hiskia and E. Papaconstantinou, Polyhedron, 1988, 7, 477 CrossRef CAS.
  24. M. Anbar and P. Neta, Int. J. Appl. Radiat. Isotopes, 1967, 18, 493 Search PubMed.
  25. D. Dimotikali, Doctoral Dissertation, University of Athens, 1984, p. 133, (in Greek).
Click here to see how this site uses Cookies. View our privacy policy here.