A study of the lowest-lying triplet and singlet states of the cyclopentadienyl cation (c-C5H5+)

(Note: The full text of this document is currently only available in the PDF Version )

Edmond P. F. Lee and Timothy G. Wright


Abstract

High-level abinitio studies [up to the CASSCF+MP2 and RCCSD(T) level] are performed on the cyclopentadienyl cation. The ground state is found to be the [X with combining tilde]3A2 state, arising from a ···(a2)2(e1)2 electronic configuration, which is of D5h symmetry. The equilibrium bond lengths are determined to be: rC–C=(1.425±0.002) Å, and rC–H=(1.080±0.005) Å. In D5h symmetry, from the ground state electronic configuration, a 1E2 state and a 1A1 state also arise, with the former splitting into two states in C2v symmetry (1A1 and 1B2) under the influence of the Jahn–Teller effect. The 1A1 state (1A1 in C2v symmetry) can then interact with the 1A1 state that arises from the 1E2 state. It is found that these two electronic states, despite having very different geometries, are almost isoenergetic, and it is not possible to decide conclusively which one is the lower, even at the highest levels of theory used. In addition, the C2v stationary points on the two 1A1 surfaces change their character between minimum and saddle point at different levels of theory. The vibration corresponding to the imaginary frequency suggests an in-plane distortion to a Cs minimum, but this was difficult to converge. The 1B2 state is found to be a saddle point at the lower levels of theory, but to have a C2v minimum at the UMP2/6-311G(2d,p) level; however, one of the harmonic frequencies is anomalously large. The lowest singlet–triplet gap (1A1[X with combining tilde]3A2) is calculated to be 6.5 kcal mol-1 (0.28 eV) at the RCCSD(T)/ cc-pVTZ//QCISD/6-31G** level of theory; the 1B2[X with combining tilde]3A2 separation is calculated to be 13.3 kcal mol-1 (0.58 eV) at the UQCISD/6-31G** level of theory. c-C5H5+ is often quoted as being a typical "‘4n’' antiaromatic compound, however it will be argued that on geometric grounds, the [X with combining tilde]state could be thought of as aromatic. The geometry of the two 1A1 states indicate antiaromatic behaviour, and that of the 1B2 state indicates close to aromatic behaviour, based on the A parameter of Julg and François.


References

  1. H. Jiao, P. van R. Schleyer, Y. Mo, M. A. McAllister and T. T. Tidwell, J. Am. Chem. Soc., 1997, 119, 7075 CrossRef CAS.
  2. L. Salem, The Molecular Orbital Theory of Conjugated Systems, W. A. Benjamin Inc., New York, 1966 Search PubMed.
  3. M. Saunders, R. Berger, A. Jaffe, J. M. McBride, J. O'Neill, R. Breslow, J. M. Hoffmann Jr., C. Perchonock, E. Wasserman, R. S. Hutton and V. J. Kuck, J. Am. Chem. Soc., 1973, 95, 3017 CrossRef CAS.
  4. A. D. Allen, M. Sumonja and T. T. Tidwell, J. Am. Chem. Soc., 1997, 119, 2371 CrossRef CAS.
  5. R. Breslow and J. M. Hoffman Jr., J. Am. Chem. Soc., 1972, 94, 2110 CrossRef CAS.
  6. W. T. Borden and E. R. Davidson, J. Am. Chem. Soc., 1979, 101, 3771 CrossRef CAS.
  7. J. Feng, J. Leszczynski, B. Weiner and M. C. Zerner, J. Am. Chem. Soc., 1989, 111, 4648 CrossRef CAS.
  8. M. N. Glukhovtsev, B. Reindl and P. van R. Schleyer, Mendeleev Commun., 1993, 100 CrossRef CAS.
  9. M. N. Glukhovtsev, R. D. Bach and S. Laiter, J. Phys. Chem., 1996, 100, 10952 CrossRef CAS.
  10. W. J. Hehre and P. van R. Schleyer, J. Am. Chem. Soc., 1973, 95, 5837 CrossRef CAS; M. J. S. Dewar and R. C. Haddon, J. Am. Chem. Soc., 1973, 95, 5836 CrossRef; idem. ibid., 1974, 96, 255 Search PubMed.
  11. E. D. Jemmis and P. van R. Schleyer, J. Am. Chem. Soc., 1982, 104, 4781 CrossRef CAS.
  12. J. Olsen, P. Jørgensen, H. Koch, A. Balkova and R. J. Bartlett, J. Chem. Phys., 1996, 104, 8007 CrossRef CAS.
  13. MOLPRO is a package of ab initio programs written by H.-J. Werner and P. J. Knowles, with contributions from J. Almlöf, R. D. Amos, A. Berning, M. J. O. Deegan, F. Eckert, S. T. Elbert, C. Hampel, R. Lindh, W. Meyer, A. Nicklass, K. Peterson, R. Pitzer, A. J. Stone, P. R. Taylor, M. E. Mura, P. Paulay, M. Schuetz, H. Stoll, T. Thorsteinsson and D. L. Cooper, with the CCSD treatment being described in:  CrossRef CAS; C. Hampel, K. Peterson and and H.-J. Werner, Chem. Phys. Lett., 1992, 190, 1 CrossRef CAS.
  14. GAUSSIAN94 (Revisions C.3/E.1), M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheesemans, T. W. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian Inc., Pittsburgh PA, 1995.
  15. M. F. Guest and J. Kendrick, GAMESS User Manual, SERC Daresbury Laboratory, CCP1/86/1, UK Search PubMed.
  16. E. P. F. Lee and T. G. Wright, J. Phys. Chem. A, 1998, 102, 4007 CrossRef CAS.
  17. P. van R. Schleyer, P. K. Freeman, H. Jiao and B. Goldfuss, Angew. Chem. Int. Ed. Engl., 1995, 34, 337 CrossRef.
  18. A. Julg and P. François, Theor. Chim. Acta, 1967, 8, 249 CrossRef CAS (the masthead in the journal incorrectly attributes this paper to volume 7).
  19. K. Jug and A. M. Koster, J. Phys. Org. Chem., 1991, 4, 163 CrossRef CAS and references therein.
  20. A. R. Katritzky, M. Karelson, S. Sold, T. M. Krygowski and K. Jug, J. Org. Chem., 1998, 63, 5228 CrossRef CAS.
  21. J. N. Murrell, S. F. A. Kettle and J. M. Tedder, Valence Theory, Wiley, New York, 2nd edn., 1970, ch. 15 Search PubMed.
  22. F. P. Lossing and J. C. Traeger, J. Am. Chem. Soc., 1975, 97, 1579 CrossRef CAS.
  23. D. W. Cullin, L. Yu, J. M. Williamson and T. A. Miller, J. Phys. Chem., 1992, 96, 89 CrossRef CAS.
  24. S. Sun and E. R. Bernstein, J. Chem. Phys., 1995, 103, 4447 CrossRef CAS.
  25. M. C. R. Cockett, K. Müller-Dethlefs and T. G. Wright, Ann. Rep. Prog. Chem. C, 1998, 94, 327 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.