Coarse graining the soft-mode dynamics of a folding protein

(Note: The full text of this document is currently only available in the PDF Version )

Ariel Fernández


Abstract

We introduce a coarse description of the peptide chain dynamics based on a topological representation of the ribbon model of the chain backbone. Our aim is to provide a coarsely defined solution to the protein folding problem based on a binary codification of the soft-mode dynamics. As a first step, a binary coding of local topological constraints associated with each secondary and tertiary structural motif is introduced, with each local topological constraint corresponding to a local torsional state. Our treatment enables us to adopt a relatively large computation time step of 64 ps, a value far larger than typical hydrodynamic drag timescales, without sacrificing accuracy within our level of description. Accordingly, the solvent can no longer be treated as the hydrodynamic drag medium, instead we incorporate its capacity for forming local conformation-dependent domains of different relative permittivities. Each evaluation of the matrix of local topological constraints (LTM) depends on the conformation-dependent local dielectric domains created by the confined solvent. Folding pathways are initially resolved as transitions between patterns of locally-encoded structural signals which change within the 10 µs–100 ms timescale range. These coarse folding pathways are generated by a parallel search for structural patterns in the LTM. Each pattern is evaluated, translated and finally recorded as a contact matrix (CM), an operation which is subject to a renormalization feedback loop. The renormalization operation periodically introduces long-range correlations on the LTM according to the latest CM generated by translation. Nucleation and cooperative effects are accounted for by means of the renormalization operation which warrants the persistence of seeding patterns or kernels upon successive LTM evaluations. The validity of our approach is tested vis-a-vis experimentally-probed folding pathways eventually generating tertiary interactions in proteins which recover their active structure under invitro renaturation conditions. As an illustration, we focus on determining significant folding intermediates and late kinetic bottlenecks which occur within the first 10 ms of the bovine pancreatic trypsin inhibitor (BPTI) renaturation process.


References

  1. R. Jaenicke, ‘Is there a code for protein folding?’, in Protein Structure and Protein Engineering, ed. E. L. Winnacker and R. Huber, Springer, Berlin, 1988, pp. 16–36 Search PubMed.
  2. O. B. Ptitsyn and G. V. Semisotnov, ‘The mechanism of protein folding”, in Conformations and Forces in Protein Folding, ed. B. Nall and K. Dill, American Association for the Advancement of Science, Washington, 1991, pp. 155–168 Search PubMed.
  3. R. Zwanzig, A. Szabo and B. Bagchi, Proc. Natl. Acad. Sci. USA, 1992, 89, 20 CAS.
  4. R. L. Baldwin, Proc. Natl. Acad. Sci. USA, 1996, 93, 2627 CrossRef CAS.
  5. K. A. Dill and H. S. Chan, Nature Struct. Biol., 1997, 4, 10 CrossRef CAS.
  6. J. Bohr, H. Bohr and S. Brunak, Europhys. News, 1996, 27, 50 CAS.
  7. T. E. Creighton, N. J. Darby and J. Kemmink, FASEB J., 1996, 10, 110 Search PubMed.
  8. M. Jamin and R. L. Baldwin, Nature Struct. Biol., 1996, 3, 613 CAS.
  9. A. Fernández and G. Appignanesi, Phys. Rev. Lett., 1997, 78, 2668 CrossRef CAS.
  10. K. Dill, K. M. Fiebig and H. S. Chan, Proc. Natl. Acad. Sci. USA, 1993, 90, 1942 CAS.
  11. (a) N. Go and H. A. Scheraga, J. Chem. Phys., 1969, 51, 4751 CAS; (b) N. Go and H. A. Scheraga, Macromolecules, 1976, 9, 535 CrossRef CAS.
  12. H. Cendra, A. Fernández and W. Reartes, J. Math. Chem., 1996, 19, 331 Search PubMed.
  13. (a) S. He and H. A. Scheraga, J. Chem. Phys., 1988, 108, 271 CrossRef CAS; (b) S. He and H. A. Scheraga, J. Chem. Phys., 1998, 108, 287 CrossRef CAS.
  14. C. Cantor and P. Schimmel, Biophysical Chemistry, vol. I–III, W. H. Freeman & Co., New York, 1980 Search PubMed.
  15. (a) A. Fernández, H. Arias and D. Guerín, Phys. Rev. E: Stat. Phys., Plasmas, Fluids Relat. Interdiscip. Top., 1995, 52, R1299 Search PubMed; (b) A. Fernández, H. Arias and D. Guerín, Phys. Rev. E: Stat. Phys., Plasmas, Fluids Relat. Interdiscip. Top., 1996, 54, 1005 Search PubMed.
  16. G. Appignanesi and A. Fernández, J. Phys. A: Math. Nucl. Gen., 1996, 29, 6265 Search PubMed.
  17. (a) Z. Guo and D. Thirumalai, Biopolymers, 1995, 36, 83 CAS; (b) M. Guenza and K. F. Freed, J. Chem. Phys., 1996, 105, 3823 CrossRef CAS.
  18. A. Fernández and A. Colubri, Physica A, 1998, 248, 336 CrossRef CAS.
  19. J. S. Richardson and D. C. Richardson, ‘The origami of proteins’, in Protein Folding, ed. L. M. Gierasch and J. King, American Association for the Advancement of Science, Washington, 1990, pp. 5–18 Search PubMed.
  20. T. G. Oas and P. S. Kim, ‘A protein folding intermediate analog’, in Protein Folding, ed. L. M. Gierasch and J. King, American Association for the Advancement of Science, Washington, 1990, pp. 123–128 Search PubMed.
  21. O. Sinanoglu, Chem. Phys. Lett., 1981, 81, 188 CrossRef CAS.
  22. C. Brooks III, M. Karplus and B. Montgomery Pettitt, Proteins: A Theoretical Perspective of Dynamics, Structure and Thermodynamics, Advances in Chemical Physics, vol. LXXI, J. Wiley & Sons, New York, 1988 Search PubMed.
  23. D. Bashford, M. Karplus and D. Weaver, ‘The diffusion–collision model of protein folding’, in Protein Folding, ed. L. M. Gierasch and J. King, American Association for the Advancement of Science, Washington, 1990, pp. 283–290 Search PubMed.
  24. T. E. Creighton, ‘Understanding protein folding pathways and mechanisms’, in Protein Folding, ed. L. M. Gierasch and J. King, American Association for the Advancement of Science, Washington, 1990, pp. 157–170 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.