Potential energy surfaces related to thioxy-hydroxy-carbene (HSνCνOH) and its radical cation

(Note: The full text of this document is currently only available in the PDF Version )

Hung Thanh Le, Thanh Lam Nguyen, Driss Lahem, Robert Flammang and Minh Tho Nguyen


Abstract

Thioxy-hydroxy-carbene (HS–C–OH) and its radical cation have been generated in the gas phase upon dissociative ionization of ethyl thioformates and characterized by various MS-MS-MS experiments. In the present study, their energies and unimolecular rearrangements have further been determined with the aid of abinitio molecular orbital calculations. Potential energy surfaces for both neutral [CH2OS] and ionized [CH2OS]+ species constructed at the QCISD(T)/6-311++G(d,p)//(U)MP2/6-31(d,p) level confirm that in both states, the carbene form is kinetically stable. While HS–C–OH is 179 kJ mol-1 less stable than the thiol acid HC(O)SH, [HS–C–OH]+ becomes even more stable than [HC(O)SH]+ and lies at 77 kJ mol-1 higher in energy than the thion acid [HC(S)OH]+, the most stable ion isomer. While it is not involved in the unimolecular chemistry of neutral thioformic acids, carbene plays a key role in that of ionized isomers. Some thermochemical parameters of HS–C–OH are estimated as follows: heat of formation ΔHf0=63 kJ mol-1 at 0 K and 57 kJ mol-1 at 298 K; ionization energy Ei=8.6 eV, and single–triplet gap ΔES-T=-156 kJ mol-1 in favour of the singlet state. For thioformic acid, its heat of formation is evaluated to be ΔHf,2980[HC(O)SH]=-124 kJ mol-1 and proton affinity PA[HC(O)SH]=773 kJ mol-1, with errors of ±10 kJ mol-1.


References

  1. T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry, Harper & Row Publishers, New York, 3rd edn., 1987 Search PubMed.
  2. C. Wentrup, Reactive Molecules, John Wiley, New York, 1984 Search PubMed.
  3. R. Feng, C. Wesdemiotis and F. W. McLafferty, J. Am. Chem. Soc., 1987, 109, 6521 CrossRef CAS.
  4. C. Wesdemiotis and F. W. McLafferty, J. Am. Chem. Soc., 1987, 109, 4760 CrossRef CAS.
  5. D. Siilzle, T. Drewello, B. L. M. van Bear and H. Schwarz, J. Am. Chem. Soc., 1988, 110, 8330 CrossRef.
  6. G. A. McGibbon, P. C. Burgers and J. K. Terlou, Int. J. Mass Spectrom. Ion. Processes, 1994, 136, 191 CrossRef CAS.
  7. G. A. McGibbon, C. A. Kingsmill and J. K. Terlouw, Chem. Phys. Lett., 1994, 222, 129 CrossRef CAS.
  8. F. A. Wiedmann, J. Cai and C. Wesdemiotis, Rapid Commun. Mass Spectrom., 1994, 8, 808.
  9. P. C. Burgers, G. A. McGibbon and J. K. Terlouw, Chem. Phys. Lett., 1994, 224, 539 CrossRef CAS.
  10. D. Lahem, R. Flammang and M. T. Nguyen, Chem. Phys. Lett., 1997, 270, 93 CrossRef CAS.
  11. R. H. Bateman, J. Brown, M. Lefevere, R. Flammang and Y. Van Haverbeke, Int J. Mass Spectrom. Ion Processes, 1992, 115, 205 CrossRef CAS.
  12. J. Brown, R. Flammang, Y. Govaert, M. Plisnier and C. Wentrup, Rapid. Commun. Mass Spectrom., 1992, 6, 249 CAS.
  13. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. DeFrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian 94, Gaussian, Inc., Pittsburgh PA, 1994 Search PubMed.
  14. M. L. Frisch, J. A. Pople and J. S. Binkley, J. Chem. Phys., 1984, 80, 3265 CrossRef CAS.
  15. E. Auberg, S. Samdal and H. M. Siep, J. Mol. Struct., 1979, 57, 95 CrossRef CAS.
  16. P. George, C. W. Bock and A. Schmiedekamp, Chem. Phys. Lett., 1981, 80, 127 CrossRef CAS.
  17. T. K. Ha, M. T. Nguyen and L. G. Vanquickenborne, J. Mol. Struct., 1982, 90, 107 CrossRef.
  18. S. P. So, J. Mol. Struct.: THEOCHEM, 1987, 151, 141 CrossRef.
  19. R. Fausto, L. A. E. Batista de Carvalho, J. J. C. Teixeira-Dias and M. N. Ramos, J. Chem. Soc., Faraday Trans. 2, 1989, 85, 1945 RSC.
  20. R. Fausto, J. Mol. Struct.: THEOCHEM, 1994, 315, 123 CrossRef.
  21. M. T. Nguyen, W. D. Weringa and T. K. Ha, J. Phys. Chem., 1989, 93, 7956 CrossRef.
  22. A. Torro-Labbe and C. Cardenas, Int. J. Quantum Chem., 1987, 32, 685 CrossRef.
  23. Y. Tao and H. Lin, J. Mol. Struct.: THEOCHEM, 1990, 206, 109 CrossRef.
  24. M. Remko, K. R. Liedl and B. M. Rode, Chem. Phys. Lett., 1996, 263, 379 CrossRef CAS.
  25. E. D. Jemmis, K. T. Giju and J. Leszcynski, J. Phys. Chem. A, 1997, 101, 7389 CrossRef CAS.
  26. X. Xie, Y. Tao, H. Cao and J. Huang, J. Mol. Struct.: THEOCHEM, 1998, 422, 237 CrossRef CAS.
  27. J. Huang, K. L. Han, R. S. Zhun, G. Z. He and N. Q. Lou, J. Phys. Chem. A, 1998, 102, 2044 CrossRef CAS.
  28. W. H. Hocking and and G. Winnewisser, Z. Naturforsch, A, 1976, 31a, 422, 438, 995; 1977, 32a, 1108.
  29. B. P. Winnewisser and W. H. Hocking, J. Phys. Chem., 1980, 84, 1771 CrossRef CAS.
  30. H. O. Kalinowski, W. H. Hocking and B. P. Winnewisser, J. Chem. Res. (S), 1978, 260 Search PubMed.
  31. K. I. Lazaar and S. H. Bauer, J. Chem. Phys., 1985, 83, 85 CrossRef CAS.
  32. M. T. Nguyen, Chem. Phys. Lett., 1989, 163, 344 CrossRef.
  33. M. Sana and M. T. Nguyen, Chem. Phys. Lett., 1992, 196, 390 CrossRef CAS.
  34. S. G. Lias, T. E. Bartmess, J. F. Liebmann, J. L. Holmes, R. D. Levin and W. G. Wallard, J. Phys. Chem. Ref. Data, 1988, 17, Supplement 1.
Click here to see how this site uses Cookies. View our privacy policy here.