Potential energy surface for unimolecular dissociations and rearrangements of the ground state of [C2H3FO] systems

(Note: The full text of this document is currently only available in the PDF Version )

Lam Thanh Nguyen, Raman Sumathi and Minh Tho Nguyen


Abstract

The potential energy surface (PES) of [C2H3FO] systems in its electronic ground state has been investigated using density functional theory method, at the B3LYP/6-311++G(d,p) level. Ten stable intermediates, including acetyl fluoride (1), fluoroacetaldehyde (9), 1-fluorovinyl alcohol (4), 2-fluorovinyl alcohol, carbenes and fluorooxiranes, have been located. Most stationary points on the PES corresponding to the molecular elimination and rearrangement channels from these intermediates have been identified. Ketene (8) is found to be the predominant product in the unimolecular dissociations of 1, 4, 9 and fluorooxirane (6). The most probable channels for ketene formation from acetyl fluoride are 18 and 148. In the reactions of both CH3CO and F radicals, both these processes are energetically feasible for the thermal reactants and hence should lead to a spontaneous emission of vibrationally hot HF. The present PES characterises the CH3CO+F reaction to be a capture-limited association–elimination reaction with a very high and pressure-independent rate coefficient. In addition to its direct decomposition to ketene, 9 can give rise to stable rearrangement products, viz., 2-fluorovinyl alcohol (12) and 6. Fluorooxirane (6) decomposes to ketene through its isomerisation to 9 as intermediate and the present study provides an explanation for the non-observation of this intermediate.


References

  1. K. L. Kompa and R. D. Levine, Acc. Chem. Res., 1994, 27, 91 CrossRef CAS.
  2. (a) C. B. Moore and J. C. Weisshaar, Annu. Rev. Phys. Chem., 1983, 34, 525 CrossRef CAS; (b) M. C. Chuang, M. F. Foltz and C. B. Moore, J. Chem. Phys., 1987, 87, 3855 CrossRef CAS and refs cited therein; (c) G. E. Scuseria and H. F. Schaefer, J. Chem. Phys., 1989, 90, 3629 CrossRef CAS.
  3. (a) A. Horowitz, C. J. Kershner and J. G. Calvert, J. Phys. Chem., 1982, 86, 3094 CrossRef CAS; (b) A. Horowitz and J. G. Calvert, J. Phys. Chem., 1982, 86, 3105 CrossRef CAS.
  4. J. S. Yadav and J. D. Goddard, J. Chem. Phys., 1986, 84, 2682 CrossRef CAS.
  5. (a) M. D. Person, P. W. Kash and L. J. Butler, J. Phys. Chem., 1992, 96, 2021 CrossRef CAS; (b) M. D. Person, P. W. Kash and L. J. Butler, J. Chem. Phys., 1992, 97, 355 CrossRef CAS; (c) G. Olah, E. Zadok, R. Edler, D. H. Adamson, W. Kasha and G. K. Surya Prakash, J. Am. Chem. Soc., 1989, 111, 9123 CrossRef CAS; (d) G. Natta, G. Mazzanti, G. Pregoglia, M. Binaghi and M. Peraldo, J. Am. Chem. Soc., 1960, 82, 4742 CrossRef CAS; (e) N. Kogure, T. Ono and F. Watari, J. Mol. Struct., 1993, 296, 1 CrossRef CAS; (f) S. Deshmukh and W. P. Hess, J. Chem. Phys., 1994, 100, 6429 CrossRef CAS; (g) S. Deshmukh and W. P. Hess, J. Phys. Chem., 1994, 98, 12535 CrossRef CAS; (h) P. R. Winter, B. Rowland, W. P. Hess, J. G. Radziszewski, M. R. Nimlosand and G. B. Ellison, J. Phys. Chem. A, 1998, 102, 3238 CrossRef CAS.
  6. (a) R. Sumathi and A. K. Chandra, J. Chem. Phys., 1993, 99, 6531 CrossRef CAS; (b) B. Rowland and W. P. Hess, J. Phys. Chem. A, 1997, 101, 8049 CrossRef CAS; (c) R. Sumathi and A. K. Chandra, Chem. Phys., 1994, 181, 73 CrossRef CAS; (d) R. Sumathi and M. T. Nguyen, J. Phys. Chem. A, 1998, 102, 8150 CrossRef CAS.
  7. (a) B. R. Weiner and R. N. Rosenfeld, J. Phys. Chem., 1988, 92, 4640 CrossRef CAS; (b) D. E. Klimek and M. J. Berry, Chem. Phys. Lett., 1973, 20, 141 CrossRef CAS; (c) K. Morokuma, S. Kato and K. Hirao, J. Chem. Phys., 1980, 72, 1800 CrossRef CAS.
  8. (a) Y. S. Choi, P. Teal and C. B. Moore, J. Opt. Soc. Am. B, 1990, 7, 1829 CAS; (b) Y. S. Choi and C. B. Moore, J. Chem. Phys., 1991, 94, 5414 CrossRef CAS; (c) Y. S. Choi and C. B. Moore, J. Chem. Phys., 1992, 97, 1010 CrossRef CAS; (d) Y. S. Choi and C. B. Moore, J. Chem. Phys., 1995, 103, 9981 CrossRef CAS.
  9. (a) J. D. Goddard and H. F. Schaefer, J. Chem. Phys., 1990, 93, 4907 CrossRef CAS; (b) K. Kamiya and K. Morokuma, J. Chem. Phys., 1991, 94, 7287 CrossRef CAS.
  10. H. Hollenstein, D. Luckhaus, J. Pochert, M. Quack and G. Seyfang, Angew. Chem., Int. Ed. Engl., 1997, 36, 140 CrossRef CAS.
  11. T. K. Ha, J. Pochert and M. Quack, J. Phys. Chem. A, 1998, 102, 5241 CrossRef CAS.
  12. T. Schaefer, T. A. Wildman and R. Sebastian, J. Mol. Struct. (Theochem), 1982, 6, 93 CrossRef.
  13. V. J. Klimkowski, P. Pulay, J. D. Ewbank, D. C. Mckean and L. Schafer, J. Comput. Chem., 1984, 5, 517 CAS.
  14. J. De Smedt, F. Vanhuoteghen, C. Van Alsenoy, H. J. Geise and L. Schafer, J. Mol. Struct. (Theochem), 1992, 91, 289 CrossRef CAS.
  15. K. B. Wiberg, C. M. Hadad, P. R. Rablen and J. Cioslowski, J. Am. Chem. Soc., 1992, 114, 8644 CrossRef CAS.
  16. J. W. Ochterski, G. A. Petersson and K. B. Wiberg, J. Am. Chem. Soc., 1995, 117, 11299 CrossRef CAS.
  17. M. R. Zachariah, P. R. Westmoreland, D. R. Burgress, W. Tsang and C. F. Melius, J. Phys. Chem., 1996, 100, 8737 CrossRef CAS.
  18. M. W. Wong, Chem. Phys. Lett., 1996, 256, 391 CrossRef CAS.
  19. R. Sumathi and A. K. Chandra, Chem. Phys., 1992, 165, 257 CrossRef CAS.
  20. R. Sumathi and M. T. Nguyen, J. Phys. Chem. A, 1998, 102, 412 CrossRef CAS.
  21. M. M. Maricq, J. C. Ball, A. M. Straccia and J. J. Szente, Int. J. Chem. Kinet., 1997, 29, 421 CrossRef CAS.
  22. (a) M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gompertz, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. J. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart and J. A. Pople, Gaussian 94, Gaussian Inc., Pittsburgh PA, 1994; (b) A. D. Becke, J. Chem. Phys., 1993, 98, 5648 CrossRef CAS; (c) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785 CrossRef CAS.
  23. (a) L. Pierce, Bull. Am. Phys. Soc. Ser. II, 1956, 1, 198 Search PubMed; (b) L. Pierce and L. C. Krisher, J. Chem. Phys., 1959, 31, 875 CAS.
  24. (a) R. W. Kilb, C. C. Lin and E. B. Wilson, J. Chem. Phys., 1957, 26, 1695 CAS; (b) J. D. Swalen and C. C. Costain, J. Chem. Phys., 1959, 31, 1562 CAS; (c) R. Nelson and L. Pierce, J. Mol. Spectrosc., 1965, 18, 344 CAS; (d) M. D. Harmony, V. W. Laurie, R. L. Kuczkowski, R. H. Schwendeman, D. A. Ramsay, F. J. Lovas, W. J. Lafferty and A. G. Maki, J. Phys. Chem. Ref. Data, 1979, 8, 619 CAS.
  25. (a) T. Iijima and M. Kimura, Bull. Chem. Soc. Jpn., 1969, 42, 2159 CAS; (b) T. Iijima, Bull. Chem. Soc. Jpn., 1972, 45, 3526 CAS; (c) C. Kato, S. Konaka, T. Iijima and M. Kimura, Bull. Chem. Soc. Jpn., 1969, 42, 2148 CAS.
  26. (a) D. C. McKean, J. L. Duncan and L. Batt, Spectrochim. Acta A, 1973, 29, 1037 CrossRef CAS; (b) D. C. McKean, Spectrochim. Acta A, 1975, 31, 861 CrossRef; (c) R. Nakagaki and I. Hanazaki, J. Phys. Chem., 1982, 86, 1501 CrossRef CAS.
  27. H. V. Phan and J. R. Durig, Struct. (Theochem), 1990, 209, 333 Search PubMed.
  28. D. A. Dixon and B. E. Smart, J. Phys. Chem., 1991, 95, 1609 CrossRef CAS.
  29. (a) J. R. Sodeau and E. K. Lee, Chem. Phys. Lett., 1978, 57, 71 CrossRef CAS; (b) S. N. Ahmed, M. L. McKee and P. B. Shevlin, J. Am. Chem. Soc., 1985, 107, 1320 CrossRef CAS.
  30. D. Sulzle, T. Drewello, B. L. M. van Baar and H. Schwarz, J. Am. Chem. Soc., 1988, 110, 8330 CrossRef.
  31. (a) R. S. Sheridan and M. A. Kasselmayer, J. Am. Chem. Soc., 1984, 106, 436 CrossRef CAS; (b) M. A. Kasselmayer and R. S. Sheridan, J. Am. Chem. Soc., 1986, 108, 99 CrossRef.
  32. J. S. Yadav and J. D. Goddard, J. Chem. Phys., 1986, 85, 3975 CrossRef CAS.
  33. A. Tachibana, M. Koizumi, I. Okazaki, H. Teramae and T. Yamabe, Theor. Chim. Acta, 1987, 71, 7 CAS.
  34. T. Takumoto, K. Saito and A. Imamura, J. Phys. Chem., 1985, 89, 2286 CrossRef.
  35. M. T. Nguyen, D. Sengupta, G. Raspoet and L. G. Vanquickenborne, J. Phys. Chem., 1995, 99, 11883 CrossRef CAS.
  36. A. Srivatsava, E. Arunan, G. Manke II, D. W. Setser and R. Sumathi, J. Phys. Chem. A, 1998, 102, 6406 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.