On closed-loop liquid–liquid immiscibility

(Note: The full text of this document is currently only available in the PDF Version )

Leonid V. Yelash and Thomas Kraska


Abstract

This paper is a contribution to the discussion about the existence of closed liquid–liquid immiscibilities in binary fluid mixtures. In order to complete the picture of closed loops in isotropic fluid mixtures additional global phase diagrams have been calculated. The microscopic effects which cause the closed-loop behaviour are discussed for isotropic model fluids and compared to the effects causing closed loops in systems with strong directional attractive forces. It is concluded that the responsible effects are the same in isotropic and anisotropic systems. The effects differ only in the strength depending on the kind of underlying interaction. The directional attractive forces such as hydrogen bonding are stronger than an isotropic van der Waals attraction. For weak interacting isotropic fluids the closed-loop behaviour turns out to be more sensitive to the chosen equation of state terms.


References

  1. G. N. Escobedo-Alvarado and S. I. Sandler, AIChE J., 1998, 44, 1178 CAS.
  2. D. Peng and D. Robinson, Ind. Chem. Eng. Fundam., 1976, 15, 59 Search PubMed.
  3. D. S. Wong and S. I. Sandler, AIChE J., 1992, 38, 671 CrossRef CAS.
  4. J. V. Sengers, Lecture at the NAT O Advanced Study Institute on Supercritical Fluids II, Kemer, Turkey, 12th–24th July, 1998 Search PubMed.
  5. J. N. Canongia Lopes and D. J. Tildesley, Mol. Phys., 1997, 92, 187 CrossRef.
  6. J. C. G. Calado, Plenary Lecture at the 15th International Conference on Chemical Thermodynamics, presented by J. N. Canongia Lopes, Porto, 26th July–1st August, 1998 Search PubMed.
  7. M. N. Garcia-Lisbona, A. Galindo, G. Jackson and A. N. Burgess, Mol. Phys., 1998, 93, 57 CrossRef CAS.
  8. H. Weingärtner, M. Kleemeier, S. Wiegand and W. Schöer, J. State. Phys., 1995, 78, 169 Search PubMed.
  9. H. Weingärtner, J. Chem. Thermodyn., 1997, 29, 1409 CrossRef CAS.
  10. C. S. Hudson, Z. Phys. Chem., 1904, 47, 113 CAS.
  11. J. A. Barker and W. Fock, Discuss. Faraday Soc., 1953, 15, 188 RSC.
  12. S. Ono, Mem. Fac. Eng. Kyushu Univ., 1950, 12, 201 Search PubMed.
  13. J. S. Rowlinson, Proc. R. Soc. London, Ser. A, 1952, 214, 192.
  14. L. Z. Boshkov, Dokl. Acad. Nauk SSSR, 1987, 294, 901 Search PubMed.
  15. R. L. Scott and P. H. van Konynenburg, Discuss. Faraday Soc., 1970, 49, 87 RSC.
  16. P. H. van Konynenburg and R. L. Scott, Phil. Trans. R. Soc. London, Ser. A, 1980, 298, 495 Search PubMed.
  17. F. Ree, J. Chem. Phys., 1980, 73, 5401 CrossRef CAS.
  18. D. G. Green and G. Jackson, J. Chem. Phys., 1992, 97, 8672 CrossRef CAS.
  19. C.-H. Kim, P. Vimalchand, M. D. Donohue and S. I. Sandler, AIChE J., 1986, 32, 1726 CAS.
  20. A. van Pelt, C. J. Peters and J. de Swaan Arons, J. Chem. Phys., 1991, 95, 7569 CrossRef CAS.
  21. O. Redlich and J. N. S. Kwong, Chem. Rev., 1949, 44, 344.
  22. L. Z. Boshkov and L. V. Yelash, Dokl. Acad. Nauk SSSR, 1995, 340, 622 Search PubMed; L. Z. Boshkov and L. V. Yelash, Fluid Phase Equilib., 1997, 141, 105 CrossRef.
  23. L. V. Yelash and T. Kraska, Ber. Bunsen-Ges. Phys. Chem., 1998, 102, 213 CAS.
  24. L. V. Yelash and T. Kraska, Z. Phys. Chem., in the press Search PubMed.
  25. L. V. Yelash, T. Kraska and U. K. Deiters, J. Chem. Phys., in the press Search PubMed.
  26. T. Kraska, Ber. Bunsen-Ges. Phys. Chem., 1996, 100, 1318 CAS.
  27. U. K. Deiters and I. L. Pegg, J. Chem. Phys., 1989, 90, 6632 CrossRef CAS.
  28. T. Kraska and U. K. Deiters, J. Chem. Phys., 1992, 96, 539 CrossRef CAS.
  29. B. Widom and J. S. Rowlinson, J. Chem. Phys., 1970, 52, 1670 CAS.
  30. T. W. Melnyk and B. L. Sawford, Mol. Phys., 1975, 29, 891 CAS.
  31. H. Ochel, H. Becker, K. Maag and G. M. Schneider, J. Chem. Thermodyn., 1993, 25, 667 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.