The ultraviolet photodissociation of HN3: The H+N3 product channel

(Note: The full text of this document is currently only available in the PDF Version )

Phillip A. Cook, Stephen R. Langford and Michael N. R. Ashfold


Abstract

The near ultraviolet photolysis of hydrazoic acid, HN3, has been investigated at a range of wavelengths, λ[greater than or equal, slant]240 nm, using the technique of H Rydberg atom photofragment translational spectroscopy (PTS). Analysis of the total kinetic energy release (TKER) spectra so obtained reveals that the resulting N3(X) fragments are formed in a progression of levels involving both the symmetric stretch mode (v100) and the symmetric stretch mode combined with one and two quanta of bending motion. The deduced N3(X) product rotational energy disposal can be reproduced by an impulsive model, which yields both an impact parameter, b=1.26±0.05 Å, and a refined measure of the H–N3 bond strength, D0(H–N3)=30970±50 cm-1. The N3(X) product vibrational progressions observed at each photolysis wavelength ‘break off’ at a low kinetic energy release of ∽4600±800 cm-1. This is interpreted by invoking a barrier to dissociation via H–N bond fission on the Ã1A″ state potential energy surface, with the exoergicity associated with this barrier released mainly as product translation. The observed energy disposals and the deduced impact parameter are consistent with a fragmentation in which the most probable recoil velocity of the departing H atom is directed at ∽90° to the near linear N3 chain. DN3 photolysis has been investigated to a lesser extent. The H/D+N3 spectra obtained following ultraviolet excitation of HN3 and, especially, DN3 also show signal at high TKER that is most readily accommodated in terms of a two photon dissociation process. The general shape of the PTS arising from the latter process is suggestive of a statistical energy disposal amongst the available H/D+N3(X) product states, such as might arise if the two photon excited molecules undergo radiationless transfer to a lower energy potential energy surface and then fragment. There is some evidence that a statistical fragmentation process also plays a role at the energy of one absorbed photon. Both would also contribute to the observed yield of H/D atoms at low TKER; in the case of HN3, the ‘slow’ H atom yield is augmented by H atoms resulting from photolysis of NH(a; v=3) products arising via the competing NH(a)+N2(X) dissociation channel.


References

  1. M. Zyrianov, Th. Droz-Georget, A. Sanov and H. Reisler, J. Chem. Phys., 1996, 105, 8111 CrossRef CAS.
  2. Th. Droz-Georget, M. Zyrianov, H. Reisler and D. W. Chandler, Chem. Phys. Lett., 1997, 276, 316 CrossRef CAS and references therein.
  3. J.-J. Klossika, H. Flöthmann, C. Beck, R. Schinke and K. Yamashita, Chem. Phys. Lett., 1997, 276, 325 CrossRef CAS.
  4. S. S. Brown, R. B. Metz, H. L. Berghout and F. F. Crim, J. Chem. Phys., 1996, 105, 6293 CrossRef CAS.
  5. S. S. Brown, H. L. Berghout and F. F. Crim, J. Chem. Phys., 1997, 107, 8985 CrossRef CAS.
  6. J. E. Stevens, Q. Cui and K. Morokuma, J. Chem. Phys., 1998, 108, 1452 CrossRef CAS and references therein.
  7. J. R. McDonald, J. W. Rabalais and S. P. McGlynn, J. Chem. Phys., 1979, 52, 1332 CrossRef.
  8. G. Schönnenbeck, H. Biehl and F. Stuhl, J. Chem. Phys., 1998, 109, 2210 CrossRef CAS.
  9. U. Meier and V. Staemmler, J. Phys. Chem., 1991, 95, 6111 CrossRef CAS.
  10. M. Lock, K.-H. Gericke and F. J. Comes, Chem. Phys., 1996, 213, 385 CrossRef CAS.
  11. F. Rohrer and F. Stuhl, J. Chem. Phys., 1988, 88, 4788 CrossRef CAS.
  12. R. E. Continetti, D. R. Cyr, D. L. Osborn, D. J. Leahy and D. M. Neumark, J. Chem. Phys., 1993, 99, 2616 CrossRef CAS.
  13. M. Zyrianov, Th. Droz-Georget and H. Reisler, J. Chem. Phys., 1997, 106, 7454 CrossRef CAS.
  14. K.-H. Gericke, R. Theinl and F. J. Comes, Chem. Phys. Lett., 1989, 164, 605 CrossRef CAS.
  15. H. H. Nelson and J. R. McDonald, J. Chem. Phys., 1990, 93, 8777 CrossRef CAS.
  16. J. J. Chu, P. Marcus and P. J. Dagdigian, J. Chem. Phys., 1990, 93, 257 CrossRef CAS.
  17. K.-H. Gericke, M. Lock, R. Fasold and F. J. Comes, J. Chem. Phys., 1992, 96, 422 CrossRef CAS.
  18. M. Hawley, A. P. Baronavski and H. H. Nelson, J. Chem. Phys., 1993, 99, 2638 CrossRef CAS.
  19. K.-H. Gericke, T. Haas, M. Lock, R. Theinl and F. J. Comes, J. Phys. Chem., 1991, 95, 6104 CrossRef CAS.
  20. R. J. Barnes, A. Gross, M. Lock and A. Sinha, J. Phys. Chem. A, 1997, 101, 6133 CrossRef CAS.
  21. B. R. Foy, M. P. Casassa, J. C. Stephenson and D. S. King, J. Chem. Phys., 1988, 89, 608 CrossRef CAS.
  22. B. R. Foy, M. P. Casassa, J. C. Stephenson and D. S. King, J. Chem. Phys., 1989, 90, 7037 CrossRef CAS.
  23. M. P. Casassa, B. R. Foy, J. C. Stephenson and D. S. King, J. Chem. Phys., 1991, 94, 250 CrossRef CAS.
  24. J. C. Stephenson, M. P. Casassa and D. S. King, J. Chem. Phys., 1988, 89, 1378 CrossRef CAS.
  25. M. Alexander, H. Werner and P. J. Dagdigian, J. Chem. Phys., 1988, 89, 1388 CrossRef CAS.
  26. M. H. Alexander, T. Hemmer, H.-J. Werner and P. J. Knowles, J. Chem. Phys., 1990, 93, 3307 CrossRef CAS.
  27. M. H. Alexander, P. J. Dagdigian and H.-J. Werner, Faraday Discuss., Chem. Soc., 1991, 91, 319 RSC.
  28. K.-H. Gericke, M. Lock and F. J. Comes, Chem. Phys. Lett., 1991, 186, 427 CrossRef CAS.
  29. T. Haas, K.-H. Gericke, C. Maul and F. J. Comes, Chem. Phys. Lett., 1993, 202, 108 CrossRef CAS.
  30. B. A. Thrush, Proc. R. Soc. London, Ser. A, 1956, 235, 143 Search PubMed.
  31. A. E. Douglas and W. J. Jones, Can. J. Phys., 1965, 43, 2216 CAS.
  32. R. A. Beaman, T. Nelson, D. S. Richards and D. W. Setser, J. Phys. Chem., 1987, 91, 6090 CrossRef CAS.
  33. C. R. Brazier, P. F. Bernath, J. B. Burkholder and C. J. Howard, J. Chem. Phys., 1988, 89, 1762 CrossRef CAS.
  34. R. Pahnke, S. H. Ashworth and J. M. Brown, Chem. Phys. Lett., 1988, 147, 179 CrossRef CAS.
  35. T. W. Archibald and J. R. Sabin, J. Chem. Phys., 1971, 55, 1821 CAS.
  36. J. M. Dyke, N. B. H. Jonathan, A. E. Lewis and A. Morris, Mol. Phys., 1982, 47, 1241 CAS.
  37. G. Chambaud and P. Rosmus, J. Chem. Phys., 1992, 96, 77 CrossRef CAS.
  38. J. Zhang, K. Xu and G. Amaral, Proc. SPIE, 1998, 3271, 271 Search PubMed.
  39. G. P. Morley, I. R. Lambert, M. N. R. Ashfold, K. N. Rosser and C. M. Western, J. Chem. Phys., 1992, 97, 3157 CrossRef CAS.
  40. C. L. Reed, M. Kono, S. R. Langford, R. N. Dixon and M. N. R. Ashfold, J. Chem. Soc., Faraday Trans., 1997, 93, 2721 RSC.
  41. B. P. Winnewisser, J. Mol. Spectrosc., 1980, 82, 220 CrossRef CAS.
  42. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV, Constants of Diatomic Molecules, van Nostrand Reinhold, New York, 1979 Search PubMed.
  43. W. R. Anderson, J. Chem. Phys., 1989, 93, 530 CAS.
  44. C. E. Moore, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (US) 35/V.I., 1971 Search PubMed.
  45. R. S. Ram and P. F. Bernath, J. Opt. Soc. Am., 1986, B3, 1170 Search PubMed.
  46. T. Shimanouchi, J. Phys. Chem. Ref. Data, 1977, 6, 993 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.