The passage of gases through the liquid water/vapour interface: a simulation study

(Note: The full text of this document is currently only available in the PDF Version )

T Somasundaram, R M. Lynden-Bell and C H. Patterson


Abstract

We have used atomistic simulation to measure the free energy profiles for a number of molecules crossing the air/liquid water interface at room temperature. The principal molecules studied were CO2 and N2, both common molecules with quadrupole moments; in addition some results were obtained for CH3CN, an example of a dipolar molecule, and Ar which has no electrostatic interaction with water. Our aim is to establish these profiles in order to provide a foundation for understanding the kinetics of gas uptake across the vapour/liquid interface and to understand them in terms of local structure at the molecular level. We found that there is a free energy minimum corresponding to a surface-adsorbed site in each case and that for N2 and CO2 there is a free energy barrier to passage from the bulk solution to the surface-adsorbed site. We discuss these results in terms of the local structure and in relation to some theoretical models of gas uptake.


References

  1. C. Chipot, M. A. Wilson and A. Pohorille, J. Phys. Chem. B, 1997, 101, 782 CrossRef CAS.
  2. D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press, San Diego, USA, 1996 Search PubMed.
  3. H. J. C. Berendsen, J. R. Grigera and T. P. Straatsma, J. Phys. Chem., 1987, 91, 6269 CrossRef CAS.
  4. M. Matsumoto and Y. Kataoka, J. Chem. Phys., 1988, 88, 3233 CrossRef CAS.
  5. M. Matsumoto, Y. Takaoka and Y. Kataoka, J. Chem. Phys., 1993, 98, 1464 CrossRef CAS.
  6. J. Alejandre, D. J. Tildesley and G. Chapela, J. Chem. Phys., 1995, 102, 4574 CrossRef CAS.
  7. V. P. Sokhan and D. J. Tildesley, Mol. Phys., 1997, 92, 625 CrossRef CAS.
  8. S. F. Murthy, C. S. O'Shea and I. R. McDonald, Mol. Phys., 1983, 50, 531.
  9. D. M. F. Edwards and P. A. Madden, Mol. Phys., 1984, 51, 1163 CAS.
  10. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, Oxford, 1987 Search PubMed.
  11. M. in het Panhuis, C. H. Patterson and R. M. Lynden-Bell, Mol. Phys., 1998, 94, 963 CrossRef.
  12. M. in het Panhuis, personal communication.
  13. T. R. Forester and W. Smith, The DL-POLY-2.0 Reference Manual, CCLRC, Daresbury Laboratory, Warrington, England, version 2.0 edition, 1995 Search PubMed.
  14. H. M. Princen and S. G. Mason, J. Colloid Sci., 1965, 20, 353 Search PubMed.
  15. H. M. Princen, J. Th. G. Overbeek and S. G. Mason, J. Colloid Interface Sci., 1966, 24, 125 CrossRef.
  16. J. A. Dean, Lange's Handbook of Chemistry, 1992 Search PubMed.
  17. P.-L. Chau and R. L. Mancera, Mol. Phys., 1998, in the press Search PubMed.
  18. C. J. H. Knox and L. F. Phillips, J. Phys. Chem., 1998, in the press Search PubMed.
  19. R. M. Lynden-Bell and J. C. Rasaiah, J. Chem. Phys., 1997, 107, 1981 CrossRef CAS.
  20. P. Davidovits, J. T. Jayne, S. X. Duan, D. R. Worsnop, M. S. Zahniser and C. E. Kolb, J. Phys. Chem., 1991, 95, 6337 CrossRef CAS.
  21. G. M. Nathanson, P. Davidovits, D. R. Worsnop and C. E. Kolb, J. Phys. Chem., 1996, 100, 13007 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.