Exergonic fragmentations in photogenerated zwitterions

(Note: The full text of this document is currently only available in the PDF Version )

Przemyslaw Maslak and Jennifer M. McGuinn


Abstract

The competition between the fluorescent back-electron transfer and the exergonic fragmentation of radical anions in photogenerated intramolecular zwitterions showed that the rate of fragmentation followed the driving force of the reaction, with the notable exception of the most exergonic case.


References

  1. Mesolysis is defined as a unimolecular fragmentation of a radical ion into a radical ion. See: (a) P. Maslak and J. N. Narvaez, Angew. Chem., Int. Ed. Engl., 1990, 29, 283 CrossRef; (b) P. Müller, Pure Appl. Chem., 1994, 1077.
  2. (a) J.-M. Savéant, J. Phys. Chem., 1994, 98, 3716 CrossRef CAS; (b) P. Maslak, T. M. Vallombroso, W. H. Chapman Jr. and J. N. Narvaez, Angew. Chem., Int. Ed. Engl., 1994, 33, 73 CrossRef; (c) A. Anne, S. Fraoua, J. Moiroux and J.-M. Savéant, J. Am. Chem. Soc., 1996, 118, 3938 CrossRef CAS; (d) M. L. Andersen, W. Long and D. D. M. Wayner, J. Am. Chem. Soc., 1997, 119, 6590 CrossRef CAS.
  3. For a review see: P. Maslak, Top. Curr. Chem., 1993, 168, 1 Search PubMed.
  4. J. C.-C. Tseng, S. Huang and L. A. Singer, Chem. Phys. Lett., 1988, 153, 401 CrossRef CAS; J. C.-C. Tseng and L. A. Singer, J. Phys. Chem., 1989, 93, 7092 CrossRef CAS; M. J. Foley and L. A. Singer, J. Phys. Chem., 1994, 98, 6430 CrossRef.
  5. The reactive compounds for these studies were prepared from 1b. Both 1a and 1b were synthesised following the literature procedure (ref. 4). All compounds were stable for several weeks at –10 °C under argon in the dark. Each compound was prepared and studied independently at least twice.
  6. The electronic coupling between the radical cation and the radical anion in C(if the twist angle is less than 90°) would lead to a shift of electron density from the radical anion moiety to the radical cation site, diminishing the degree of electron transfer, and affecting somewhat the thermodynamic calculations presented here.
  7. The reversible redox potentials were obtained using cyclic voltammetry on 1a.
  8. Quantum yield of the model compound (1a) is Q°=kf/(kf+kother), where kother includes all non-radiative decay paths of C. Quantum yield of the reactive compounds (1b–f) is Q=kf/(kf+kother+km), and therefore, km=(Q°/Q– 1)τ°, where τ° is the fluorescent life-time of the model [τ°= 1/(kf+kother) determined by time-resolved fluorescence to be 5.6 ns.
  9. D. D. M. Wayner and V. D. Parker, Acc. Chem. Res., 1993, 26, 287 CrossRef CAS.
  10. S. W. Benson, Thermochemical Kinetics, Wiley, New York, 1976 Search PubMed; S. W. Benson, F. R. Cruickshank, D. M. Golden, G. R. Haugen, H. E. O'Neal, A. S. Rodgers, R. Shaw and R. Walsh, Chem. Rev., 1969, 69, 279 Search PubMed; S. E. Stein, Structure and Properties, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, 1994 CrossRef CAS.
  11. The data for halogen ions (and H) are based on the gas phase ionization potentials, hydration energies, and solvation energies for transfer from water to MeCN, and are adjusted for the reference electrode used here (SCE) R. G. Pearson, J. Am. Chem. Soc., 1986, 108, 6109 Search PubMed; Y. Marcus, Pure Appl. Chem., 1985, 57, 1103 CrossRef CAS.
  12. P. Hapiot, J. Pinson and N. Yousfi, New J. Chem., 1992, 16, 877 Search PubMed; E. M. Arnett, K. Amarnath, N. G. Harvey and S. Venimadhavan, J. Am. Chem. Soc., 1990, 112, 7346 CrossRef CAS; F. G. Bordwell and J.-P. Cheng, J. Am. Chem. Soc., 1991, 113, 1736 CrossRef CAS; F. G. Bordwell, X.-M. Zhang, A. V. Satish and J.-P. Cheng, J. Am. Chem. Soc., 1994, 116, 6605 CrossRef CAS; J. Lind, X. Shen, T. E. Eriksen and G. Merenyi, J. Am. Chem. Soc., 1990, 112, 479 CrossRef CAS; G. Merenyi, J. Lind and M. Jonsson, J. Am. Chem. Soc., 1993, 115, 4945 CrossRef CAS.
  13. P. Maslak, J. Kula and J. E. Chateauneuf, J. Am. Chem. Soc., 1991, 113, 2304 CrossRef CAS.
  14. See for example: P. F. Barbara, T. J. Meyer and M. A. Ratner, J. Am. Chem. Soc., 1996, 100, 13 148 Search PubMed.
  15. R. A. Marcus, Discuss. Faraday Soc., 1960, 29, 21 RSC; R. Marcus, Annu. Rev. Phys. Chem., 1964, 15, 155 CrossRef CAS; R. Marcus and N. Sutin, Biochim. Biophys. Acta, 1985, 811, 265 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.