X-Ray absorption spectroscopic studies of the Cr(IV) 2-ethyl-2-hydroxybutanoato(1–) complex†

(Note: The full text of this document is currently only available in the PDF Version )

Aviva Levina, Peter A. Lay and Garry J. Foran


Abstract

The first X-ray absorption spectrum of the rare Cr(IV) oxidation state has been obtained for the complex with the ehbaH ligand [ehbaH = 2-ethyl-2-hydroxybutanoate(1–)] in frozen aqueous solution (14 K), showing that at pH = 3.5 and in a large excess of the ligand, the predominant form of Cr(IV) is the five-coordinate oxo complex, [CrIVO- (ehbaH)2]0.


References

  1. E. S. Gould, Coord. Chem. Rev., 1994, 135/136, 651 CrossRef.
  2. R. Codd, P. A. Lay and A. Levina, Inorg. Chem., 1997, 36, 5440 CrossRef CAS.
  3. G. Barr-David, T. W. Hambley, J. A. Irwin, R. J. Judd, P. A. Lay, B. D. Martin, R. Bramley, N. E. Dixon, P. Hendry, J.-Y. Ji, R. S. U. Baker and A. M. Bonin, Inorg. Chem., 1992, 31, 4906 CrossRef CAS.
  4. For recent reviews of the Cr genotoxicity, see: M. Cieślak-Golonka, Polyhedron, 1996, 15, 3667 Search PubMed; A. Kortenkamp, M. Casadevall, P. Da Cruz Fresco and R. O. J. Shayer, NATO ASI Ser., Ser. 2, 1997, 26, 15 CrossRef CAS; D. M. Stearns and K. E. Wetterhahn, NATO ASI Ser., Ser. 2, 1997, 26, 55 Search PubMed and references therein.
  5. Abbreviations: ehba = 2-ethyl-2-hydroxybutanoate(2–); XAS = X-ray absorption spectra; XANES = X-ray absorption near-edge structure; XAFS = X-ray absorption fine structure; SS = single scattering; and MS = multiple scattering.
  6. P. A. Lay and A. Levina, J. Am. Chem. Soc., 1998, 120, 6704 CrossRef CAS; A. Levina, G. Barr-David, R. Codd, P. A. Lay, N. E. Dixon, A. Hammershøi and P. Hendry, Chem. Res. Toxicol., 1999, 12, 371 CrossRef CAS.
  7. Quantitative generation of I is achieved in dilute aqueous solutions, but its isolation is difficult owing to the decomposition reactions.1,2.
  8. M. C. Ghosh and E. S. Gould, J. Am. Chem. Soc., 1993, 115, 3167 CrossRef CAS.
  9. R. N. Bose, B. Fonkeng, G. Barr-David, R. P. Farrell, R. J. Judd, P. A. Lay and D. F. Sangster, J. Am. Chem. Soc., 1996, 118, 7139 CrossRef CAS.
  10. R. J. Judd, T. W. Hambley and P. A. Lay, J. Chem. Soc., Dalton Trans., 1989, 2205 RSC.
  11. Electronic supplementary information (ESI) is available (http://www.rsc.org/suppdata/cc/1999/2339/), including: (i) tables showing the parameters of XAS experiments, the conditions, constraints and restraints applied to the XAFS fittings, the results of SS and MS XAFS calculations and the contributions of different scattering paths into the calculated MS XAFS; and (ii) figures showing typical kinetic data of Cr(IV) decomposition; XANES spectra of fresh and exposed Cr(IV) samples, the results of SS XAFS simulations for Cr(V/IV/III)–ehba and the structure of I refined by MS XAFS (11 pp.).
  12. M. Krumpolc and J. Roček, J. Am. Chem. Soc., 1979, 101, 3206 CrossRef CAS.
  13. R. N. Bose and E. S. Gould, Inorg. Chem., 1985, 24, 2832 CrossRef CAS The Cr(III) product of the Cr(V)+ Fe(II) reaction was identified, on the basis of its UV–VIS spectral and ion-exchange properties, as [CrIII(OH2)2-(ehbaH)2]+.
  14. The use of low temperatures also maximises the MS contributions.
  15. The characteristic colours of the complexes are: dark pink for 10 mM Cr(IV); brown–red for 10 mM Cr(V); and green for 10 mM Cr(III).
  16. P. J. Ellis and H. C. Freeman, J. Synchrotron Rad., 1995, 2, 190 CrossRef CAS.
  17. A. M. Rich, R. S. Armstrong, P. J. Ellis, H. C. Freeman and P. A. Lay, Inorg. Chem., 1998, 37, 5743 CrossRef CAS.
  18. The Ni/p ratio of 1.2 (Ni= number of independent observations; p= number of refined parameters) showed that the restrained MS XAFS calculations11 were overdetermined and the results are valid (N. Binsted, R. W. Strange and S. S. Hasnain, Biochemistry, 1992, 31, 12 117) Search PubMed.
  19. HyperChem, Version 5.1, Hypercube Inc., Gainesville, FL, 1996 Search PubMed.
  20. I. Arčon, B. Mitrič and A. Kodre, J. Am. Ceram. Soc., 1998, 81, 222 CAS.
  21. P. J. Ellis, R. W. Joyner, T. Maschmeyer, A. F. Masters, D. A. Niles and A. K. Smith, J. Mol. Catal. A: Gen., 1996, 111, 297 CrossRef CAS.
  22. The Cr–O bond lengths in the Cr(III)–ehba complex, determined from SS XAFS calculations (1.94 Å),11 are in agreement with the proposed structure of this complex.13 The Cr–O bond lengths in [CrIII(OH2)6]3+(determined from MS XAFS calculations) are 1.97 Å(H. Sakane, A. Muñoz-Páez, S. Díaz-Moreno, J. M. Martínez, R. R. Pappalardo and E. S. Marcos, J. Am. Chem. Soc., 1998, 120, 10 397) Search PubMed.
  23. The different Cr–O bond lengths in Na[CrVO(ehba)2] involving the carboxylato and alkoxo moieties (1.90 and 1.80 Å, respectively)10 are not distinguished by SS XAFS when k≤ 11 Å–1 since the resolution in bond lengths is 0.15 Å.17 These data are in agreement with the results of SS and MS XAFS calculations for solid Na[CrVO(ehba)2](T. Maschmeyer, G. Barr-David, P. A. Lay and A. F. Masters, to be submitted).
  24. The V–O(alcohol) bond length in NH4[VIV(ehba)(ehbaH)] is 1.95 Å.3 The presence of unusually long (> 2 Å) Cr–O bonds in I is consistent with the ease of loss of one ehbaH ligand in solution.1,2.