Water and hydrogen atom elimination from ionised n-propanol: extraordinarily large kinetic isotope effects

(Note: The full text of this document is currently only available in the PDF Version )

Richard D. Bowen, Simon J. Mandeville, Moschoula A. Trikoupis and Johan K Terlouw


Abstract

Hydrogen atom loss from ionised n-propanol occurs specifically from the α-carbon atom and is subject to a kinetic isotope effect of approximately 500∶1; somewhat smaller, though still very large, isotope effects are manifested in water loss, which is initiated by an essentially site-specific 1,4-hydrogen transfer.


References

  1. R. G. Cooks, J. H. Beynon, R. M. Caprioli and G. R. Lester, Metastable Ions, Elsevier, Amsterdam, 1973 Search PubMed.
  2. For reviews, see: D. H. Williams, Acc. Chem. Res., 1977, 10, 280 Search PubMed; R. D. Bowen, D. H. Williams and H. Schwarz, Angew. Chem., Int. Ed. Engl., 1979, 18, 451 CrossRef CAS; R. D. Bowen and D. H. Williams, in Rearrangements in Ground and Excited States, ed. P. DeMayo, Academic Press, New York, 1980, vol. 1, ch. 2 CrossRef.
  3. The expression ‘critical energy’ corresponds conceptually to the term ‘activation energy’, A. Maccoll, Org. Mass Spectrom., 1980, 15, 225 Search PubMed.
  4. For examples of extremely large isotope effects in very small hydrocarbon ions, see: C. Lifshitz and L. Sternberg, Int. J. Mass Spectrom. Ion Phys., 1969, 2, 303 Search PubMed; U. Lohle and Ch. Ottinger, J. Chem. Phys., 1969, 51, 3097 CrossRef CAS; M. L. Vestal and J. H. Futrell, J. Chem. Phys., 1970, 52, 978 CrossRef; L. P. Hills, M. L. Vestal and J. H. Futrell, J. Chem. Phys., 1971, 54, 3834 CAS.
  5. For a review of the mechanistic significance of extreme isotope effects, see: A. Thibblin and P. Ahlberg, Chem. Soc. Rev., 1989, 18, 209 Search PubMed.
  6. F. W. McLafferty and F. Turecek, Interpretation of Mass Spectra, 4th edn., University Science Books, Mill Valley, California, 1993 Search PubMed.
  7. J. J. Zwinselmann, N. M. M. Nibbering, N. E. Middlemiss, J. H. Vajda and A. G. Harrison, Int. J. Mass Spectrom. Ion Phys., 1981, 38, 163 CrossRef.
  8. T. Weiske and H. Schwarz, Chem. Ber., 1983, 116, 323 CAS; T. Weiske, H. Halim and H. Schwarz, Chem. Ber., 1985, 118, 495 CAS; T. Weiske and H. Schwarz, Tetrahedron, 1986, 42, 6245 CrossRef CAS.
  9. S. Hammerum and P. J. Derrick, J. Chem. Soc., Chem Commun., 1985, 996 RSC.
  10. S. Ingemann, S. Hammerum and P. J. Derrick, J. Am. Chem. Soc., 1988, 110, 3869 CrossRef CAS; S. Ingemann, S. Hammerum, P. J. Derrick, R. H. Fokkens and N. M. M. Nibbering, Org. Mass Spectrom., 1989, 24, 885 CAS; S. Ingemann, E. Kluft, N. M. M. Nibbering, C. E. Alison, P. J. Derrick and S. Hammerum, Org. Mass Spectrom., 1991, 26, 875 CAS.
  11. R. D. Bowen and A. D. Wright, J. Chem. Soc., Chem. Commun., 1991, 1055; 1992, 96 Search PubMed; A. D. Wright and R. D. Bowen, Can. J. Chem., 1993, 71, 1073 Search PubMed.
  12. R. D. Bowen, A. W. Colburn and P. J. Derrick, J. Am. Chem. Soc., 1990, 113, 1132 references therein.
  13. B. F. Yates, W. J. Bouma and L. Radom, J. Am. Chem. Soc., 1984, 106, 5805 CrossRef CAS.
  14. For a review, see: S. Hammerum, Mass Spectrom. Rev., 1988, 7, 123 Search PubMed.
  15. F. Lossing, J. Am. Chem. Soc., 1977, 99, 7256.
  16. R. D. Bowen and P. J. Derrick, J. Chem. Soc., Perkin Trans. 2, 1992, 1041 RSC.
  17. J. W. Gauld and L. Radom, Chem. Phys. Lett., 1997, 275, 28 CrossRef CAS.
  18. W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, An Initio Molecular Orbital Theory, Wiley, New York, 1986 Search PubMed.
  19. J. B. Foresman and A. Firsch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Pittsburgh, PA, 1996, ch. 7 Search PubMed.
  20. H. F. van Garderen, P. J. A. Ruttink, P. C. Burgers, G. A. McGibbon and J. K. Terlouw, Int. J. Mass Spectrom. Ion Processes, 1992, 121, 159 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.