Modified mesoporous silicate MCM-41 materials: immobilised perruthenate—a new highly active heterogeneous oxidation catalyst for clean organic synthesis using molecular oxygen

(Note: The full text of this document is currently only available in the PDF Version )

Andrew Bleloch, Brian F. G. Johnson, Steven V. Ley, Adam J. Price, Douglas S. Shephard and Andrew W. Thomas


Abstract

A new oxidation catalyst containing perruthenate immobilised within MCM-41 has been prepared and used in the clean oxidation of alcohols to carbonyl compounds with molecular oxygen.


References

  1. R. Lenz and S. V. Ley, J. Chem. Soc., Perkin Trans. 1, 1997, 3291 RSC.
  2. I. E. Mark, P. R. Giles, M. Isukazaki, C. J. Urch and S. M. Brown, J. Am. Chem. Soc., 1997, 119, 12 661 CrossRef.
  3. S. V. Ley, J. Norman, W. P. Griffith and S. P. Marsden, Synthesis, 1994, 640.
  4. B. Hinzen and S. V. Ley, J. Chem. Soc., Perkin Trans. 1, 1997, 1907 RSC; B. Hinzen, R. Lenz and S. V. Ley, Synthesis, 1998, 977 CrossRef CAS.
  5. Several reviews considering various aspects of MCM-41 other mesoporous materials have appeared: J. Y. Ying, C. P. Mehnert and M. S. Wong, Angew. Chem., Int Ed., 1999, 38, 56 Search PubMed; S. Biz and M. L. Occelli, Catal. Rev. Sci. Eng., 1998, 40, 329 CrossRef CAS; K. Moller and T. Bein, Chem. Mater., 1998, 10, 2950 Search PubMed; A. Corma, Top. Catal., 1997, 4, 249 CrossRef CAS; G. D. Stucky, Q. Huo, A. Firouzi, B. F. Chmelka, S. Schacht, I. G. Voigt-Martin and F. Schuth, in Progress in Zeolite and Microporous Materials, Studies in Surface Science and Catalysis, Vol 105, ed. H. Chon, S.-K. Ihm, Y. S. Uh, Elsevier, Amsterdam, 1997, 3 CrossRef; C. J. Brinker, Curr. Opin Solid State Mater. Sci., 1996, 1, 798 CrossRef; N. K. Raman, M. T. Anderson and C. J. Brinker, Chem. Mater., 1996, 8, 1682 Search PubMed; D. M. Antonelli and J. Y. Ying, Curr. Opin. Colloid Interface Sci., 1996, 1, 523 CrossRef CAS; P. Behrens, Angew. Chem., Int. Ed. Engl., 1996, 35, 515 CrossRef CAS; X. S. Zhao, G. Q. Lu and G. J. Millar, Ind. Eng. Chem. Res., 1996, 35, 2075 CAS; A. Sayari, Chem. Mater., 1996, 8, 1840 CrossRef CAS.
  6. For different methods of tethering chiral catalysts, see D. E. De Vos, S. De Wildemann, B. F. Sels, P. J. Grobet and P. A. Jacobs, Angew. Chem., Int. Ed., 1999, 38, 980 Search PubMed; B. F. G. Johnson, S. A. Raynor, D. S. Shephard, T. Maschmeyer, J. M. Thomas, G. Sankar, S. Bromley, R. D. Oldroyd, L. Gladden and M. D. Mantle, Chem. Commun., 1999, 1167 CrossRef CAS.
  7. D. S. Shephard, W. Zhou, T. Maschmeyer, J. M. Matters, C. L. Roper, S. Parsons, B. F. G. Johnson and M. J. Duer, Angew. Chem., Int. Ed., 1998, 37, 2719 CrossRef CAS; T. Maschmeyer, R. D. Oldroyd, G. Sankar, J. M. Thomas, I. J. Shannon, J. A. Klepetko, A. F. Masters, J. K. Beattie and C. R. A. Catlow, Angew. Chem., Int. Ed. Engl., 1997, 36, 1639 CrossRef CAS; J. Liu, X. Feng, G. E. Fryxell, L.-Q. Wang, A. Y. Kim and M. Gong, Adv. Mater., 1998, 10, 161 CrossRef CAS.
  8. 10 wt% of the solid catalyst 3 corresponds to 0.3 wt% Ru by ICP analysis.
  9. 10 wt% of the solid catalyst 6 corresponds to 1.1 wt% Ru by ICP analysis.
  10. General procedure for the oxidation of alcohols: To a solution of the alcohol (30.0 mg) in dry toluene (5 cm3) was added MCMSP 6(3.0 mg) and the resulting mixture heated at 80 °C, for 30 min to 3 h in an oxygen atmosphere. After cooling, filtration of the mixture followed by evaporation of the solution afforded the pure aldehyde in quantitative yield (Table 1). The solid catalytic oxidant reagent can be re-used many times (up to 12 times without loss of activity). It can be easily filtered through a polypropylene filter or through a bond elut cartridge and then washed off the surface with toluene. In addition, recovery by centrifugation was also found to be quantitative.
  11. J. Habermann, S. V. Ley and J. S. Scott, J. Chem. Soc., Perkin Trans. 1, 1999, 1253 RSC.
  12. D. S. Shephard, G. Sankar, J. M. Thomas, D. Ozkaya, B. F. G. Johnson, R. Raja, R. D. Oldroyd and R. G. Bell, Chem. Eur. J., 1998, 4, 1214 CrossRef CAS.
  13. In experiments (i) and (iv), no oxidation was observed after 50 h, in toluene/oxygen at 80 °C, implying that a perruthenate derived species was responsible for the catalysis and not RuO2. In experiments (i) and (iii), approximately 10 and 70% oxidation, respectively, to the aldehyde was observed after 3 days under the same conditions and complete leaching of potassium perruthenate was observed in both cases. The used solid material from experiments (ii) and (iii) showed no catalytic oxidative activity when reused.
  14. D. G. Lee, Z. Wang and W. D. Chandler, J. Org. Chem., 1992, 57, 3276 CrossRef CAS.
  15. B. Hinzen and S. V. Ley, J. Chem. Soc., Perkin Trans. 1, 1998, 1 RSC; F. Haunert, M. H. Bolli, B. Hinzen and S. V. Ley, J. Chem. Soc., Perkin Trans. 1, 1998, 2235 RSC; S. V. Ley, M. H. Bolli, B. Hinzen, A.-G. Gervois and B. J. Hall, J. Chem. Soc., Perkin Trans. 1, 1998, 2239 RSC; M. H. Bolli and S. V. Ley, J. Chem. Soc., Perkin Trans. 1, 1998, 2243 RSC; J. Habermann, S. V. Ley and J. S. Scott, J. Chem. Soc., Perkin Trans. 1, 1998, 3127 RSC; M. Caldarelli, J. Habermann and S. V. Ley, J. Chem. Soc., Perkin Trans. 1, 1999, 107 RSC; S. V. Ley, A. W. Thomas and H. Finch, J. Chem. Soc., Perkin Trans. 1, 1999, 669 RSC; S. V. Ley, O. Schucht, A. W. Thomas and P. J. Murray, J. Chem. Soc., Perkin Trans. 1, 1999, 1251 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.