A metallo-supramolecular double-helix containing a major and a minor groove

(Note: The full text of this document is currently only available in the PDF Version )

Michael J. Hannon, Claire L. Painting and Nathaniel W. Alcock


Abstract

Control of the microarchitecture in a metallo-supramolecular double-helical array results from inter-strand edge–face π-stacking interactions which pull the ligand strands together thereby creating two distinct helical grooves (major and minor).


References

  1. J.-M. Lehn, Supramolecular Chemistry—Concepts and Perspectives, VCH, Weinheim, 1995 Search PubMed; D. Philp and J. F. Stoddart, Angew. Chem., Int. Ed. Engl., 1996, 35, 1155 Search PubMed; E. C. Constable, Prog. Inorg. Chem., 1994, 42, 67; G. Baum, E. C. Constable, D. Fenske, C. E. Housecroft and T. Kulke, Chem. Eur. J., 1999, 5, 1862 CAS; C. Piguet, G. Bernardinelli and G. Hopfgartner, Chem. Rev., 1997, 97, 2005 CrossRef CAS; R. W. Saalfrank and I. Bernt, Curr. Opin. Solid State Mater. Sci., 1998, 3, 407 CrossRef CAS; A. F. Williams, Pure Appl. Chem., 1996, 68, 1285 CrossRef CAS; J. S. Fleming, K. L. V. Mann, S. M. Couchman, J. C. Jeffery, J. A. McCleverty and M. D. Ward, J. Chem. Soc., Dalton Trans., 1998, 2047 CAS; M. Albrecht and R. Frohlich, J. Am. Chem. Soc., 1997, 119, 1656 RSC and references therein.
  2. M. J. Hannon, S. Bunce, A. J. Clarke and N. W. Alcock, Angew. Chem., Int. Ed., 1998, 38, 1277 CrossRef.
  3. M. J. Hannon, C. L. Painting, A. Jackson, J. Hamblin and W. Errington, Chem. Commun., 1997, 1807 RSC.
  4. For examples of such interactions, see E.-I. Kim, S. Paliwal and C. S. Wilcox, J. Am. Chem. Soc., 1998, 120, 11 192 Search PubMed; Y. Umezawa, S. Tsuboyama, K. Honda, J. Uzawa and M. Nishio, Bull. Chem. Soc. Jpn., 1998, 71, 1207 CrossRef CAS; M. Nishio, Y. Umezawa, M. Hirota and Y. Takeuchi, Tetrahedron, 1995, 51, 8665 CAS; C. A. Hunter, Chem. Soc. Rev., 1994, 23, 101 CrossRef CAS and references therein.
  5. Selected data for [Ag2(L2)2][PF6]2: MS (FAB): m/z 585 {Ag(L2)}, 1061 {Ag(L2)2}, 1168 {Ag2(L2)2}, 1313 {Ag2(L2)2(PF6)}. MS (ESI): m/z 584 {Ag2(L2)2}2+, 1313 {Ag2(L2)2(PF6)}+(Found: C, 52.7; H, 3.3; N, 7.5. Calc. for Ag2C66H48N8P2F12·2H2O: C, 53.0; H, 3.5; N, 7.5%). 1H NMR (CD3CN, 250 MHz, 298 K): δ9.31 (2H, s, Hi), 8.78 (2H, d, J 8.1 Hz, H3/4), 8.18 (2H, d, J 8.1 Hz, H3/4), 8.13 (2H, d, J 8.0 Hz, H5/8), 8.00 (2H, d, J 8.1 Hz, H5/8), 7.70 (4H, m, H6,7), 7.51 (4H, d, J 8.4 Hz, Ph), 7.23 (4H, d, J 8.4 Hz, Ph), 3.89 (2H, s, CH2).; 1H NMR (CD2Cl2, 400 MHz, 183 K): δ 9.30 (3H, d, J 6.4 Hz, Hirac), 9.24 (2H, d, J 6.9 Hz, Himeso), 8.72 (5H, m, H3/4rac+meso), 8.14 (5H, m, H3/4rac+meso), 8.06 (5H, m, H5/8rac+meso), 7.94 (2H, d, J 8.0 Hz, H5/8meso), 7.90 (3H, d, J 8.0 Hz, H5/8rac), 7.65 (10H, m, H6,7rac+meso), 7.55 (3H, d, J 8.4 Hz, Ph rac), 7.43 (2H, d, J 8.4 Hz, Ph meso), 7.29 (3H, d, J 8.4 Hz, Ph rac), 7.13 (2H, d, J 8.4 Hz, Ph meso), 3.80 (3H, s, CH2rac), 3.86 (1H, d, J 9.8 Hz, CH2meso), 3.75 (1H, d, J 9.8 Hz, CH2meso).
  6. Crystal data for C45.5H36.75AgF6N4.25P: M= 895.88, triclinic, space group P[1 with combining macron], a= 13.351(3), b= 15.931(3), c= 20.478(3)Å, α= 86.741(5), β= 83.700(5), γ= 73.329(5)°, U= 4145.8(14)Å3(by least squares refinement on 5622 reflection positions), Z= 4, µ(Mo-Kα)= 0.589 mm–1, 16667 reflections measured on a Bruker AXS SMART system, 10674 unique (Rint= 0.0539). T= 180(2) K. Absorption correction by Φ-scans; minimum and maximum transmission factors: 0.73; 0.93. The lattice contains three fully occupied (as shown by test refinement) but highly mobile benzene molecules and one acetonitrile molecule (50% occupancy). Goodness-of-fit was 0.997, R1[for 5837 reflections with I> 2σ(I)]= 0.0744, wR2 = 0.2093. Refinement used SHELXTL (G. M. Sheldrick, 1997). CCDC 182/1403. See http: //www.rsc.org/suppdata/cc/1999/2023/ for crystallographic files in .cif format.
  7. Such meso- and rac-systems have also been observed by other workers. See, for example: A. Bilyk, M. M. Harding, P. Turner and T. W. Hambley, J. Chem. Soc., Dalton Trans., 1994, 2783 Search PubMed; C. O. Dietrich-Buchecker, J. F. Nierengarten, J. P. Sauvage, N. Armaroli, V. Balzani and L. DeCola, J. Am. Chem. Soc., 1993, 115, 11 237 RSC.
  8. The temperature range over which the resonances of the two isomers are distinct is insufficient for accurate determination of thermodynamic parameters. Simple modelling reveals that the box conformation cannot accommodate inter-strand π-stacking interactions. If maintained in solution, the face–edge π-stacking interactions may contribute to the enthalpic preference for the helix and the concomitant restrictions on the free rotation of the phenyl rings in the helix might contribute to the entropic preference for the meso-isomer.
Click here to see how this site uses Cookies. View our privacy policy here.