Regioselective 1,2-insertion of Ru into the C–S bond in 3-substituted thiophenes

(Note: The full text of this document is currently only available in the PDF Version )

Jose Giner Planas, Masafumi Hirano and Sanshiro Komiya


Abstract

Reactions of [Ru(cod)(cot)] 1 [cod = cycloocta-1,5-diene, cot = cycloocta-1,3,5-triene] with 3-acetyl(or formyl)thiophene and 2-acetyl(or formyl) thiophene in the presence of depe [1,2-bis(diethylphosphino)ethane] lead to completely regioselective 1,2- or 1,5-insertion into the C–S bond giving the new thiaruthenacycles [Ru(SCR[double bond, length half m-dash]CHCR′[double bond, length half m-dash]CH)(depe)2] [R = H, R′ = COMe (2a); R = H, R′ = CHO (2b); R = COMe, R′ = H (3a); R = CHO,R′ = H (3b)], respectively.


References

  1. W. D. Jones, D. A. Vicic, R. M. Chin, J. H. Roache and A. W. Myers, Polyhedron, 1997, 16, 3115 CrossRef CAS; R. J. Angelici, Polyhedron, 1997, 16, 3073 CrossRef CAS; C. Bianchini and A. Meli, Acc. Chem. Res., 1998, 31, 109 CrossRef CAS; C. Bianchini, D. Masi, A. Meli, M. Peruzzini, F. Vizza and F. Zanobini, Organome-tallics, 1998, 17, 2495 Search PubMed.
  2. H. Topsoe, B. S. Clausen and F. E. Massoth, Hydrotreating Catalysis, Springer-Verlag, Berlin, 1996 Search PubMed; R. R. Chianelli, M. Daage and M. J. Ledoux, Adv. Catal., 1994, 40, 177 Search PubMed.
  3. C. Bianchini, M. V. Jimenez, A. Meli and F. Vizza, Organometallics, 1995, 14, 3196 CrossRef CAS.
  4. L. Dong, S. B. Duckett, K. F. Ohman and W. D. Jones, J. Am. Chem. Soc., 1992, 114, 151 CrossRef CAS; W. D. Jones and L. Dong, J. Am. Chem. Soc., 1991, 113, 559 CrossRef CAS; I. E. Buys, L. D. Field, T. W. Hambley and A. E. D. McQueen, J. Chem. Soc., Chem. Commun., 1994, 557 RSC.
  5. As a typical example, spectroscopic and analytical data of 2a: Found: C, 48.33; H, 8.64; S, 5.09. Calc. for C26H54OP4RuS: C, 48.81; H, 8.51; S, 5.01%. 1H NMR (300 MHz, CD3OD): δ 10.73 (br d, 3JHP 18.0 Hz, 1 H, H1), 6.61 (dd, 3JHH 10.0, 4JHH 1.8 Hz, 1H, H3), 5.90 (t, 3JHH 10.0, 4JHP 10.0 Hz, 1H, H4), 2.25 (s, 3H, COCH3), 2.2–0.8 (m, 48H, 2 depe). 31P{1H} NMR (121 MHz, CD3OD), AMNX spin system: δ 54.8 (td, J 20.0, 16.0 Hz, 1P, eq-P trans to S), 48.5 (dt, J329.4, 20.0 Hz, 1P, ap-P), 45.5 (ddd, J 329.4, 22.0, 17.0 Hz, 1P, ap-P), 28.8 (dt, J 20.0, 16.0 Hz, 1P, eq-P trans to C). Selected 13C{1H} NMR (75.5 MHz, CD3OD): δ 200.8 (dtd, 2JCP 57.3, 15.0, 8.0 Hz, C1), 196.1 (d, 3JCP 8.3 Hz, C4). IR(KBr, cm –1): 1615 (νC[double bond, length as m-dash]O).
  6. Crystal data: for C26H52OP4RuS 2b: M= 625.71, monoclinic, space group P21/n(no. 14), a= 10.638(5), b= 15.753(5), c= 18.502(4)Å, β= 99.22(2)°, V= 3060(1)Å3, T= 293 K, Z= 4, µ(Mo-Kα)= 8.06 cm –1, R(Rw)= 0.043(0.045) for 3792 reflections. For C51H77OP4RuSB 5a: M= 974.0, monoclinic, space group P21/c(no. 14), a= 11.485(5), b= 24.678(5),c= 18.369(4)Å, β= 95.22(3)°,V= 5184(2)Å 3 , T= 293 K, Z= 4, µ(Mo-Kα)= 5.00 cm –1, R(Rw)= 0.068(0.081) for 6755 reflections. Single crystals of both 2b and 5a were recrystallised from acetone and mounted in a glass capillary. Both structures were solved using heavy atom Patterson methods and refined by full-matrix least squares on F. CCDC 182/1364. See http://www.rsc.org/suppdata/cc/1999/1793/ for crystallographic data in .cif format.
  7. As a typical example, spectroscopic and analytical data of 3a: Found: C, 48.10; H, 9.24; S, 4.85. Calc. for C26H54OP4RuS: C, 48.81; H, 8.51; S, 5.01%. 1H NMR (300 MHz, C6D6): δ 8.36 (ddq 3JHP 18.0, 3.0, 3JHH 12.0 Hz, 1H, H1), 7.98 (d, 3JHH 7 Hz, 1H, H3), 7.39 (tdt, 4JHP 12.3, 3.0, 3JHH 7.5 Hz, 1H, H2), 2.86 (s, 3H, COCH3), 2.5–0.5 (m, 48H, 2depe). 31P{1H} NMR (121 MHz, C6D6), AMNX spin system: δ 53.6 (td, J 20.7, 13.8 Hz, 1P, eq-trans to S), 46.7 (dt, J371.4, 21.0 Hz, 1P, ap-P), 43.3 (ddd, J371.4, 19.1, 15.2 Hz, 1P, ap-P), 30.3 (dt, J17.0, 15.0 Hz, 1P, eq-P trans to C). Selected 13C {1H} NMR (75.5 MHz, C6D6): δ 199.2 (d, 3JCP 7.5 Hz, C4), 169.6 (dtd, 2JCP 57.3, 16.8, 9.8 Hz, C1). IR(KBr, cm –1): 1636 (vC[double bond, length as m-dash]O).
  8. T. Morikita, M. Hirano, A. Sasaki and S. Komiya, Inorg. Chim. Acta, 1999, 291, 341 CrossRef CAS.
  9. Thiophenes investigated: 2-methyl-, 3-methyl- and 2,5-dimethyl-thiophene.
  10. As a typical example, selected spectroscopic and analytical data of 5a: Found: C, 62.52; H, 8.00; S, 3.85. Calc. for C51H77BOP4RuS: C, 62.89; H, 7.97; S, 3.29%. 1H NMR (300 MHz, acetone-d6): δ 9.78 (ddq, 3JHP= 16.0, 4.6, 3JHH 12.0 Hz, 1H, H1), 7.88 (d, 3JHH 7.8 Hz, 1H, H3), 7.00–6.90 (m, 1H, H2), 2.45 (d, J2.4 Hz, 3H, SCH3), 2.37 (s, 3H, COCH3). 31P{1H} NMR (121 MHz, acetone-d6), AMNX spin system: δ 54.5 (ddd, J29.0, 19.4, 16.5 Hz, 1P, eq-P trans to S), 48.1 (dt, J244.3, 19.4 Hz, 1P, ap-P), 44.3 (ddd, J244.3, 29.0, 14.6 Hz, 1P, ap-P), 29.5 (ddd, J19.4, 17.0, 14.6 Hz, 1P, eq-P trans to C). IR(KBr, cm–1): 1643 (vC[double bond, length as m-dash]O). Molar electric conductivity in acetone: Λ= 7.99 S cm 2 mol –1.
  11. (a) S. Harris and R. R. Chianelli, J. Catal., 1984, 86, 400 CAS; (b) L. Dong, S. B. Duckett, K. F. Ohman and W. D. Jones, J. Am. Chem. Soc., 1992, 114, 151 CrossRef CAS.
  12. Preliminary semiempirical calculations were carried out on 3-acetyl- and 3-formyl-thiophene using the MOPAC program in the Cache calculation package. Coefficients for C2 and C5 were –0.62 and –0.40 for 3-acetyl thiophene and –0.63 and –0.41 for 3-formyl thiophene, respectively.
Click here to see how this site uses Cookies. View our privacy policy here.