α-[NH3(CH2)5NH3]SnI4: a new layered perovskite structure
(Note: The full text of this document is currently only available in the PDF Version )
Jun Guan, Zhongjia Tang and Arnold M. Guloy
Abstract
The synthesis and crystal structure of new organic–inorganic layered material, α-[NH3(CH2)5SnI4, is reported, which features an unprecedented <330>-terminated layered perovskite structure.
References
(a) L. J. de Jongh and A. R. Miedema, Adv. Phys., 1974, 23, 1 CAS;
(b) G. F. Needham, R. D. Willet and H. F. Franzen, J. Phys. Chem., 1984, 88, 674 CrossRefCAS;
(c) P. Day, Philos. Trans. R. Soc. London A, 1985, 314, 145 Search PubMed;
(d) T. Ishihara, J. Takahashi and T. Goto, Phys. Rev. B, 1990, 42, 11 099 CrossRefCAS;
(e) J. Calabrese, N. L. Jones, R. L. Harlow, D. Thorn and Y. Wang, J. Am. Chem. Soc., 1991, 113, 2328 CrossRefCAS.
G. C. Papavassiliou, I. B. Koutselas, A. Terzis and M. H. Whangbo, Solid State Commun., 1994, 91, 695 CrossRefCAS; G. C. Papavassiliou,
in Nanophase Materials,
ed. G. C. Hadjipanayis and R. W. Siegel,
Kluwer Academic Publishers,
Dordrecht, The Netherlands,
1994,
pp. 493–502 and references therein Search PubMed.
B. Tieke and G. Wegner, Angew. Chem., Int. Ed. Engl., 1984, 20, 687 CrossRef.
D. B. Mitzi, C. A. Feild, W. T. A. Harrison and A. M. Guloy, Nature, 1994, 369, 467 CrossRefCAS.
D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess and A. M. Guloy, Science, 1995, 267, 1473 CAS.
J. G. Bednorz and K. A. Mueller, Z. Phys. B, 1986, 64, 189 CAS.
A. J. Millis, B. I. Shraiman and R. Mueller, Phys. Rev. Lett., 1996, 77, 175 CrossRefCAS.
R. J. Cava, Phys. Rev. B: Condens. Matter, 1992, 46, 14 101 Search PubMed.
(a) A. J. Jacobson,
in Chemical Physics of Intercalation II,
ed. P. Bernier, J. E. Fischer, S. Roth and S. A. Solin,
Plenum Press,
New York,
1993,
pp. 117–139
and references therein Search PubMed;
(b) C. N. R. Rao and
B. Raveau,
Transition Metal Oxides,
Wiley-VCH,
New York,
2nd edn., 1998,
pp. 38–220 Search PubMed.
J. Guan,
Z. Tang and
A. M. Guloy, unpublished work.
Single crystal X-ray analysis, using a Siemens SMART diffractometer
equipped with a CCD detector was carried out at –50 °C. Monochromatized
Mo-Kα radiation was used to collect a hemisphere of data.
Empirical absorption correction was applied and redundant reflections
were averaged. Laue photos and systematic absences unambiguously
indicated the space group to be Pbcn. The final cell constants are: a= 30.255(2),
b= 12.352(7), c= 25.6706(14)Å, V= 9593.0(5)Å3. Other
relevant crystallographic data are: M= 730.49, Z= 24, µ= 9.291 mm–1,
2θmax= 48.40°; total data collected, 44333; independent
reflections, 8381; observed reflections ( > 3σI), 7618; total variables,
309. The final Rindices, [I > 4σ(I)]: R1 = 0.0506, wR2 = 0.1282; (all
data): R1 = 0.0691, wR2 = 0.1432. The structure was solved by direct
methods and refined by full-matrix least-squares calculations. Thermal
parameters of all non-hydrogen atoms were treated anisotropically. Five
carbon sites (C3, C4, C13, C14, C15) exhibited conformational disorder
and were refined based on a rotational disorder model. All hydrogen
atoms were treated with a riding model (dC–H =dN–H = 0.89 Å, Uiso= 0.050).
CCDC 182/1361.
S. Wang, D. B. Mitzi, C. A. Feild and A. M. Guloy, J. Am. Chem. Soc., 1995, 117, 5297 CrossRefCAS.
E. L. Eliel,
Stereochemistry of Carbon Compounds,
McGraw-Hill,
Singapore,
1962,
pp. 124–179 Search PubMed.
J. del Hoyo,
MS thesis, University of Houston, USA, 1997.
Click here to see how this site uses Cookies. View our privacy policy here.