Prochiral selectivity and deuterium kinetic isotope effect in the oxidation of benzyl alcohol catalyzed by chloroperoxidase

(Note: The full text of this document is currently only available in the PDF Version )

Enrico Baciocchi, Laura Manduchi and Osvaldo Lanzalunga


Abstract

The chloroperoxidase-catalyzed oxidation of benzyl alcohol exhibits a very high prochiral selectivity, involving only the cleavage of the pro-S C–H bond.


References

  1. (a) S. Kobayashi, M. Nakano, T. Kimura and A. P. Schaap, Biochem. Biophys. Res. Commun., 1986, 135, 166 CAS; (b) S. Kobayashi, M. Nakano, T. Kimura and A. P. Schaap, Biochemistry, 1987, 26, 5019 CrossRef CAS; (c) P. R. Ortiz de Montellano, Y. S. Choe, G. DePillis and C. E. Catalano, J. Biol. Chem, 1987, 262, 11641 CAS; (d) B. W. Griffin, in Peroxidases in Chemistry and Biology, ed. J. Everse, K. E. Everse and M. B. Grisham, CRC Press, Boca Raton, 1991, vol. II, pp. 85–137 Search PubMed; (e) S. Colonna, N. Gaggero, L. Casella, G. Carrea and P. Pasta, Tetrahedron: Asymmetry, 1992, 3, 95 CrossRef CAS; (f) L. Casella, M. Gullotti, R. Ghezzi, S. Poli, T. Beringhelli, S. Colonna and G. Carrea, Biochemistry, 1992, 31, 9451 CrossRef CAS; (g) O. Okazaki and F. P. Guengerich, J. Biol. Chem., 1993, 268, 1546 CAS; (h) L. Casella, S. Poli, M. Gullotti, C. Selvaggini, T. Beringhelli and A. Marchesini, Biochemistry, 1994, 33, 6377 CrossRef CAS; (i) V. P. Miller, R. A. Tschirret-Guth and P. R. Ortiz de Montellano, Arch. Biochem. Biophys., 1995, 319, 333 CrossRef CAS; (j) A. Zaks and D. R. Dodds, J. Am. Chem. Soc., 1995, 117, 10419 CrossRef CAS; (k) P. H. Toy, M. Newcomb and L. P. Hager, Chem. Res. Toxicol., 1998, 11, 816 CrossRef CAS; (l) S. Hu and L. P. Hager, J. Am. Chem. Soc., 1999, 121, 872 CrossRef CAS.
  2. J. H. Dawson, Science, 1988, 240, 433 CAS; M. C. R. Franssen and H. C. Van der Plas, Adv. Appl. Microbiol., 1992, 37, 41 Search PubMed.
  3. Actually, kRcat/kScat is a measure of the intrinsic deuterium isotope effect only if the rate of release of the product from the enzyme–product complex is not kinetically significant. If this condition does not hold, the intrinsic deuterium isotope effect is expected to be larger than kRcat/kScat(ref. 4).
  4. Reaction Rates of Isotopic Molecules, ed. L. Melander and W. H. Saunders, Wiley, New York, 1980, ch. 10, pp. 297–305 Search PubMed.
  5. However, a concerted oxygen insertion, as suggested by the use of radical probe substrates [ref. 1(j), (k)], might also be compatible with the observed intrinsic kH/kD values.
  6. A. D. N. Vaz and M. J. Coon, Biochemistry, 1994, 33, 6442 CrossRef Interestingly, in this paper an intramolecular kinetic isotope effect of 2.6 was determined in the oxidation of [α-2H1]benzyl alcohol induced by purified rabbit liver cytochrome P450 2B4, using only the racemic monodeuterated benzyl alcohol. In preliminary experiments we have found significantly different values of the observed intramolecular kinetic deuterium isotope effect in the phenobarbital induced rat liver microsomal oxidation of (R)-1-d and (S)-1-d(1 and 4, respectively).
  7. (±)-1-d was reacted with SO4(from TiIII/K2S2O8 or γ-radiolysis/K2S2O8) in H2O at pH 6 (0.1 M phosphate buffer). From the molar ratio between PhCDO and PhCHO produced in the reaction, measured by GC-MS, a kH/kD value of 1.8 was calculated.
  8. The pro-R hydrogen in ethylbenzene corresponds to the pro-S hydrogen in benzyl alcohol.
  9. M. Sundaramoorthy, J. Terner and T. L. Poulos, Structure, 1995, 3, 1367 CrossRef CAS.