Remarkably stable self-assembled monolayers of new crown-ether annelated tetrathiafulvalene derivatives and their cation recognition properties†

(Note: The full text of this document is currently only available in the PDF Version )

Haiying Liu, Shenggao Liu and Luis Echegoyen


Abstract

Bis-thioctic ester derivatives of crown-ether annelated tetrathiafulvalenes (TTFs) form extremely stable self-assembled monolayers (SAMs) on gold electrodes and can recognize alkali metal ions by cyclic voltammetry.


References

  1. C. M. Yip and M. D. Ward, Langmuir, 1994, 10, 549 CrossRef CAS.
  2. I. Fujihara, H. Nakai, M. Yoshihara and T. Maeshima, Chem. Commun., 1999, 737 RSC.
  3. Y.-S. Shon and T. R. Lee, Langmuir, 1999, 15, 1136 CrossRef CAS.
  4. (a) Q. Cheng and A. Brajter-Toth, Anal. Chem., 1992, 64, 1998 CrossRef CAS; (b) Y. Wang and A. E. Kaifer, J. Phys. Chem. B, 1998, 9922 CrossRef CAS; (c) R. Blonder, I. Willner and A. F. Buckmann, J. Am. Chem. Soc., 1998, 120, 9335 CrossRef CAS.
  5. A. J. Moore, L. Goldenberg, M. R. Bryce, M. C. Petty, A. P. Monkman and S. N. Port, Adv. Mater., 1998, 10, 395 CrossRef CAS.
  6. S. Flink, B. A. Boukamp, A. v. d. Berg, F. C. J. M. van Veggel and D. N. Reinhoudt, J. Am. Chem. Soc., 1998, 120, 4652 CrossRef CAS.
  7. T. K. Hansen, T. Jorgensen, P. C. Stein and J. Becher, J. Org. Chem., 1992, 57, 6403 CrossRef CAS.
  8. All new compounds were fully characterized by spectroscopic techniques. Selected data for 1a: isolated as a red–orange solid in 87% yield, ν(KBr)/cm–1 2932 (s), 1710 (vs), 1630 (vs), 1542 (s), 1163 (s); δH(CDCl3/TMS) 4.91 (4H, s), 3.91 (4H, t, J 5.34), 3.74–3.67 (12H, m), 3.58 (4H, t, J 5.40), 3.19–3.14 (4H, m), 2.99 (2H, t, J 5.90), 2.45–2.37 (4H, m), 1.94–1.85 (2H, m), 1.79–1.63 (8H, m), 1.49–1.46 (4H, m); δC(CDCl3) 173.70, 173.17, 154.47, 142.04, 129.92, 128.82, 111.84, 108.38, 71.98, 71.51, 70.38, 60.38, 58.37, 56.36, 40.62, 38.95, 37.05, 36.19, 34.17, 26.72, 25.07; λmax(CHCl3)/nm 327.5, 304.0; FAB+-MS: m/z 862 (M+, 60%), 864 (M++ 2, 100%); HRMS (FAB+): m/z found 862.0453, calc. for C32H46O7S10: 862.0453. For data for 1bd, see footnote †.
  9. (a) Detailed synthesis will be published elsehwere; (b) S. G. Liu, M. Cariou and A. Gorgues, Tetrahedron Lett., 1998, 39, 8663 CrossRef CAS.
  10. P. Blanchard, M. Sallé, G. Duguay, M. Jubault and A. Gorgues, Tetrahedron Lett., 1992, 33, 2685 CrossRef CAS.
  11. F. Arias, L. A. Godínez, A. E. Kaifer and L. Echegoyen, J. Am. Chem. Soc., 1996, 118, 6086 CrossRef CAS.
  12. All electrochemical experiments were performed using a BAS-100W system. Electrolyte solutions were prepared from recrystallized materials using spectroscopic grade solvents and purged with argon prior to use. A three-electrode configuration was used with a Ag/AgCl reference electrode and a platinum wire as the counter electrode. The geometric areas of the gold electrodes were calculated from the slopes of the linear plots of cathodic peak current vs. the square root of the scan rate obtained for the diffusion-controlled reduction of Ru(NH3)63+[ref. 4(b)]. We employed a diffusion coefficient of 7.5 × 10–6 cm2 s–1(at 25 °C in 0.1 M NaCl). Typical values for the geometric area of the electrodes varied from 0.01 to 0.02 cm2. Surface coverages of the SAMs of TTF derivatives were calculated by integration of the current during the first scan.
Click here to see how this site uses Cookies. View our privacy policy here.