Single-electron reduction of C60 with a carbon radical: formation of the Crystal Violet cation–fulleride ion salt†

(Note: The full text of this document is currently only available in the PDF Version )

Toshikazu Kitagawa, Yangsoo Lee and Ken’ichi Takeuchi


Abstract

Whereas many carbon radicals are known to add to C60, the reaction of Crystal Violet radical 1 with C60 resulted in single-electron transfer, leading to a carbocation–carbanion salt 1+C60•–: the product was isolated as microcrystalline powder and was characterized by EPR, VIS-NIR and NMR spectroscopy.


References

  1. For reviews, see J. R. Morton, F. Negri and K. F. Preston, Acc. Chem. Res., 1998, 31, 63 Search PubMed; R. Taylor, in The Chemistry of Fullerenes, ed. R. Taylor, World Scientific, Singapore, 1995, ch. 13; CrossRef CAS; A. Hirsch, The Chemistry of the Fullerenes, Thieme, Stuttgart, 1994, ch. 6 CrossRef CAS.
  2. P. J. Krusic, E. Wasserman, P. N. Keizer, J. R. Morton and K. F. Preston, Science, 1991, 254, 1183 CrossRef CAS.
  3. P. J. Krusic, E. Wasserman, B. A. Perkinson, B. Malone, E. R. Holler, Jr., P. N. Keizer, J. R. Morton and K. F. Preston, J. Am. Chem. Soc., 1991, 113, 6724.
  4. P. J. Fagan, P. J. Krusic, C. N. McEwen, J. Lazar, D. H. Parker, N. Herron and E. Wasserman, Science, 1993, 262, 404 CrossRef CAS.
  5. Half-wave potentials, measured in 1,2-dichlorobenzene: T. Kitagawa, T. Tanaka, Y. Takata, K. Takeuchi and K. Komatsu, Tetrahedron, 1997, 53, 9965 Search PubMed.
  6. As a control experiment, the reaction of the tris(2,6-dimethoxyphenyl)methyl radical (ref. 7) and C60 was examined under the same conditions as above. As expected from the oxidation potential of this radical (–20.49 V vs. Fc/Fc+ in PhCN), which is more positive than the first reduction potential of C60, no reaction was observed.
  7. M. J. Sabacky, C. S. Johnson, Jr., R. G. Smith, H. S. Gutowsky and J. C. Martin, J. Am. Chem. Soc., 1967, 89, 2054 CrossRef CAS.
  8. T. Tanaka, T. Kitagawa, K. Komatsu and K. Takeuchi, J. Am. Chem. Soc., 1997, 119, 9313 CrossRef CAS; K. Takeuchi, T. Kitagawa, A. Miyabo, H. Hori and K. Komatsu, J. Org. Chem., 1993, 58, 5802 CrossRef CAS; K. Komatsu, H. Akamatsu, S. Aonuma, Y. Jinbu, N. Maekawa and K. Takeuchi, Tetrahedron, 1991, 47, 6951 CrossRef CAS; K. Okamoto, T. Kitagawa, K. Takeuchi, K. Komatsu, T. Kinoshita, S. Aonuma, M. Nagai and A. Miyabo, J. Org. Chem., 1990, 55, 996 CrossRef CAS.
  9. R. J. Goldacre and J. N. Phillips, J. Chem. Soc., 1949, 1724 RSC.
  10. M. E. Niyazymbetov, D. H. Evans, S. A. Lerke, P. A. Cahill and C. C. Henderson, J. Phys. Chem., 1994, 98, 13 093 CrossRef CAS; D. E. Cliffel and A. J. Bard, J. Phys. Chem., 1994, 98, 8140 CrossRef CAS.
  11. E. Weitz, L. Müller and K. Dinges, Chem. Ber., 1952, 85, 878 CrossRef CAS.
  12. An EPR spectrum of a hexane solution of (1.1 × 10–3 M), which exhibited a signal intensity corresponding to 90 ± 10% of the theoretical value, confirmed the absence of any significant dimerization.
  13. Calc. for C85H30N3: C, 93.39; H, 2.77; N, 3.84. Found for the freshly prepared salt: C, 90.01; H, 2.23; N, 3.50%. Although the C, H, N values are close to the expected values, the total of these elements was only 96%, suggesting a reaction with molecular oxygen and/or water during the analysis.
  14. R. Subramanian, P. Boulas, M. N. Vijayashree, F. D'Souza, M. T. Jones and K. M. Kadish, J. Chem. Soc., Chem. Commun., 1994, 1847 RSC; D. Dubois, M. T. Jones and K. M. Kadish, J. Am. Chem. Soc., 1992, 114, 6446 CrossRef CAS; P.-M. Allemand, G. Srdanov, A. Koch, K. Khemani, F. Wudl, Y. Rubin, F. Diederich, M. M. Alvarez, S. J. Anz and R. L. Whetten, J. Am. Chem. Soc., 1991, 113, 2780 CrossRef CAS.
  15. (a) M. M. Khaled, R. T. Carlin, P. C. Trulove, G. R. Eaton and S. S. Eaton, J. Am. Chem. Soc., 1994, 116, 3465 CrossRef CAS; (b) J. Stinchcombe, A. Pénicaud, P. Bhyrappa, P. D. W. Boyd and C. A. Reed, J. Am. Chem. Soc., 1993, 115, 5212 CrossRef CAS; (c) A. J. Schell-Sorokin, F. Mehran, G. R. Eaton, S. S. Eaton, A. Viehbeck, T. R. O'Toole and C. A. Brown, Chem. Phys. Lett., 1992, 195, 225 CrossRef CAS.
  16. J. R. Morton, K. F. Preston, P. J. Krusic, S. A. Hill and E. Wasserman, J. Am. Chem. Soc., 1992, 114, 5454 CrossRef CAS.
  17. T. Kato, T. Kodama and T. Shida, Chem. Phys. Lett., 1993, 205, 405 CrossRef CAS; G. A. Heath, J. E. McGrady and R. L. Martin, J. Chem. Soc., Chem. Commun., 1992, 1272 RSC; D. R. Lawson, D. L. Feldheim, C. A. Foss, P. K. Dorhout, C. M. Elliott, C. R. Martin and B. Parkinson, J. Electrochem. Soc., 1992, 139, L68 CAS.
  18. Trace amounts of water in THF may also cause partial hydrolysis, which gives rise to 1–OH. However, the 1:1 ratio would be retained, since the same amount of C60·– would be converted to HC60–C60H. 1–OH and HC60–C60H would be expected to have only a weak (ε < 103) absorption at wavelengths above 500 nm.
Click here to see how this site uses Cookies. View our privacy policy here.