Effect of the end-groups upon delocalisation in polymethines: the first crystallographically characterised bond-alternated cyanine

(Note: The full text of this document is currently only available in the PDF Version )

Stephen Barlow, Lawrence M. Henling, Michael W. Day, Seth R. Marder and Seth R. Marder


Abstract

The reorganisation energy associated with the end groups may be used to influence the localisation behaviour of cyanines; thus, the 1,3-bis(ruthenocenyl)allylium cation is markedly unsymmetrical in the crystal structure of its hexafluorophosphate salt, with the positive charge localised on one ruthenium, whereas the analogous iron species is delocalised and has approximate C5 symmetry.


References

  1. D. L. Smith, Photogr. Sci. Eng., 1974, 18, 309 Search PubMed and references therein.
  2. S. Dähne and R. Radegalia, Tetrahedron, 1971, 27, 3673 CrossRef.
  3. R. E. Peierls, Quantum Theory of Solids, OUP, Oxford, 1955> Search PubMed.
  4. C. Kuhn, Synth. Met., 1991, 41–43, 3681 CrossRef.
  5. J. S. Craw, J. R. Reimers, G. B. Bacskay, A. T. Wong and N. S. Hush, Chem. Phys., 1992, 167, 77 CrossRef CAS.
  6. L. M. Tolbert and M. E. Ogle, Synth. Met., 1992, 51, 391 CAS.
  7. In contrast, when the end groups do not electronically stabilise the charge, as in the case of phenyl-terminated polymethine anions, the distorted cyanine is predicted to retain its symmetry, but with the charge no longer being delocalised onto the end groups.6.
  8. L. M. Tolbert and X. Zhao, J. Am. Chem. Soc., 1997, 119, 3253 CrossRef CAS.
  9. S. F. Nelsen, H. Q. Tran and M. A. Nagy, J. Am. Chem. Soc., 1998, 120, 298 CrossRef CAS.
  10. M. B. Robin and P. Day, Adv. Inorg. Chem. Radiochem., 1967, 10, 247 Search PubMed.
  11. C. Creutz, Prog. Inorg. Chem., 1983, 30, 1 CAS.
  12. W. E. Watts, in Comprehensive Organometallic Chemistry, ed. G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon, London, 1988 Search PubMed.
  13. U. Behrens, J. Organomet. Chem., 1979, 182, 89 CrossRef CAS.
  14. A. I. Yanovsky, Y. T. Struchkov, A. Z. Kreindlin and M. I. Rybinskaya, J. Organomet. Chem., 1989, 369, 125 CrossRef.
  15. M. I. Rybinskaya, A. Z. Kreindlin, Y. T. Struchkov and A. I. Yanovsky, J. Organomet. Chem., 1989, 359, 233 CrossRef CAS.
  16. S. Barlow, L. M. Henling, M. W. Day, W. P. Schaefer and S. R. Marder, manuscript in preparation.
  17. J. Lukasser, H. Angleitner, H. Schottenberger, H. Kopacka, M. Schweiger, B. Bildstein, K.-H. Ongania and K. Wurst, Organometallics, 1995, 14, 5566 CrossRef CAS.
  18. C.-F. Chiu, M. Song, B.-H. Chen and K. S. Kwan, Inorg. Chim. Acta, 1997, 266, 73 CrossRef CAS.
  19. P. Seiler and J. D. Dunitz, Acta Crystallogr., Sect. B, 1980, 36, 2946 CrossRef.
  20. The bond length alternation in 1a is insignificant, although the large values for the appropriate bond lengths [1.469(10) and 1.461(10)Å] are artefacts of unmodelled disorder in the structure.
  21. The inherently unsymmetrical 4a is isomorphous with 3a.16.
  22. The 3 cation appears symmetrical on the NMR timescale at room temperature [as does the cation shown in Fig. 1(b)]; low temperature studies (to –85 °C, 500 MHz for 1H and 125 MHz for 13C) also give no unambiguous evidence for localisation. UV–VIS solvatochromism studies are also inconclusive; symmetrical 1 and 2, and unsymmetrical 4 all show similar behaviour to 3.
  23. J. R. Reimers and N. S. Hush, Chem. Phys., 1993, 176, 407 CrossRef CAS.
  24. M. Sato, Y. Kawata, A. Kudo, A. Iwai, H. Saitoh and S. Ochiai, J. Chem. Soc., Dalton Trans., 1998, 2215 RSC.
  25. G. M. Sheldrick, SHELXS97 and SHELXL97, Programs for Crystallography, University of Göttingen, Germany, 1997.
Click here to see how this site uses Cookies. View our privacy policy here.