Protein film cryovoltammetry: demonstrations with a 7Fe ([3Fe–4S] + [4Fe–4S]) ferredoxin

(Note: The full text of this document is currently only available in the PDF Version )

James P. McEvoy and Fraser A. Armstrong


Abstract

Low-temperature protein film voltammetry, demonstrated here by studies of Fe–S clusters in the 7Fe ferredoxin from Thermoplasma acidophilum, offers a novel way to investigate active site redox reactions, allowing resolution of complex transformations and transient states, and providing an immediate and sensitive gauge of solvent effects.


References

  1. F. A. Armstrong, H. A. Heering and J. Hirst, Chem. Soc. Rev., 1997, 26, 169 RSC; J. Hirst and F. A. Armstrong, Anal. Chem., 1998, 70, 5062 CrossRef CAS.
  2. For recent articles describing different aspects of the voltammetry of protein films, see, for example: A. E. Kasmi, J. M. Wallace, E. F. Bowden, S. M. Binet and R. J. Linderman, J. Am. Chem. Soc., 1998, 120, 225 Search PubMed; J. L. Kong, Z. Q. Lu, Y. M. Lvov, R. Z. B. Desamero, H. A. Frank and J. F. Rusling, J. Am. Chem. Soc., 1998, 120, 7371 CrossRef.
  3. (a) P. Douzou, Cryobiochemistry, Academic Press, New York, 1977 Search PubMed; (b) A. L. Fink and M. A. Geeves, in Contemporary Enzyme Kinetics and Mechanism, Academic Press, New York, 1983, p. 173 Search PubMed; (c) F. Travers and T. Barman, Biochim., 1995, 77, 937 Search PubMed.
  4. A. M. Klibanov, Trends Biochem. Sci., 1989, 14, 141 CrossRef CAS.
  5. G. K. Rowe, M. T. Carter, J. N. Richardson and R. W. Murray, Langmuir, 1995, 11, 1797 CrossRef CAS.
  6. F. A. Armstrong, J. N. Butt and A. Sucheta, Methods Enzymol., 1993, 227, 479 CAS.
  7. J. N. Butt, F. A. Armstrong, J. Breton, S. J. George, A. J. Thomson and E. C. Hatchikian, J. Am. Chem. Soc., 1991, 113, 6663 CrossRef CAS; J. N. Butt, S. E. J. Fawcett, J. Breton, A. J. Thomson and F. A. Armstrong, J. Am. Chem. Soc., 1997, 119, 9729 CrossRef CAS.
  8. B. Shen, L. L. Martin, J. N. Butt, F. A. Armstrong, C. D. Stout, G. M. Jensen, P. J. Stephens, G. N. La Mar, C. M. Gorst and B. K. Burgess, J. Biol. Chem., 1993, 268, 25928 CAS; J. Hirst, J. L. C. Duff, G. N. L. Jameson, M. A. Kemper, B. K. Burgess and F. A. Armstrong, J. Am. Chem. Soc., 1998, 120, 7085 CrossRef CAS.
  9. J. L. Breton, J. L. C. Duff, J. N. Butt, F. A. Armstrong, S. J. George, Y. Pétillot, E. Forest, G. Schäfer and A. J. Thomson, Eur. J. Biochem., 1995, 233, 937 CAS.
  10. J. L. C. Duff, J. L. J. Breton, J. N. Butt, F. A. Armstrong and A. J. Thomson, J. Am. Chem. Soc., 1996, 118, 8593 CrossRef CAS.
  11. S. Wakabayashi, N. Fujimoto, K. Wada, H. Matsubara, L. Kerscher and D. Oesterhelt, FEBS Lett., 1983, 162, 21 CrossRef CAS; T. Iwasaki, T. Suzuki, T. Kon, T. Imai, A. Urushiyama, D. Ohmori and T. Oshima, J. Biol. Chem., 1997, 272, 3453 CrossRef CAS.
  12. T. Fujii, Y. Hata, M. Oozeki, H. Moriyama, T. Wakagi, N. Tanaka and T. Oshima, Biochemistry., 1997, 36, 1505 CrossRef CAS.
  13. J. Hirst, G. N. L. Jameson, J. W. A. Allen and F. A. Armstrong, J. Am. Chem. Soc., 1998, 120, 11994 CrossRef CAS.
  14. S. J. George, A. J. M. Richards, A. J. Thomson and M. G. Yates, Biochem. J., 1984, 224, 247 CAS; M. K. Johnson, D. E. Bennett, J. A. Fee and W. V. Sweeney, Biochim. Biophys. Acta, 1987, 911, 81 CrossRef CAS; P. J. Stephens, G. M. Jensen, F. Devlin, T. V. Morgan, C. D. Stout and B. K. Burgess, Biochemistry, 1991, 30, 3200 CrossRef CAS; C. D. Stout, J. Biol. Chem., 1993, 268, 25 920 CAS; Z. G. Hu, D. Jollie, B. K. Burgess, P. J. Stephens and E. Münck, Biochemistry, 1994, 33, 14 475 CrossRef CAS.
  15. E. Laviron, in Electroanalytical Chemistry, ed. A. J. Bard, Marcel Dekker, New York, 1982, 1253 Search PubMed.
  16. The methodology was based on that described in ref. 6. Polymyxin B sulfate (200 µg ml–1) was present as co-adsorbate in both the aqueous electrode-coating solution and the cryosolvent cell solution (usually 70% v/v methanol; Prolabo > 99%) with 0.1 M NaCl buffered by HEPES at pH* 7.4 or acetate at pH* 5.0. The aqueous saturated calomel reference electrode (SCE) with internal salt bridge was held in a Luggin side arm filled with cryosolvent but maintained at room temperature with a water jacket. Values of pH and pH*[see: ref. 3(a), and R. G. BatesDetermination of pH: Theory and Practice, Wiley, New York, 1973] were measured with glass pH electrode at 273 K, without corrections. Cell anaerobicity was maintained by purging with Ar. Temperatures were controlled by immersing the cell compartment in a stirred ethanol bath, to which was added dry ice or frozen ethanol, and measured (±1 K) with a thermometer after 10 min equilibration. Background currents were subtracted using an in-house analysis program (Dr H. A. Heering) Search PubMed.
  17. Measurements of the [3Fe–4S]+/0 couple between pH* 4 and 9 (recorded at 273 K) showed that, over the full temperature range studied, the pK for protonation of [3Fe–4S]° remains significantly lower than the pH* used in measuring the voltammetry for Fig. 1, thus ruling out the possibility that E°′ varies trivially as a result of pH* changes. Values obtained were: at 273 K (aqueous) pK= 5.6, at 273 K (70% v/v methanol) pK= 6.7, at 198 K (70% v/v methanol) pK= 6.8 (an apparent value since pH* is measured at 273 K).
  18. The peak broadening observed as the temperature is lowered is not due to increased uncompensated resistance (iR); like irreversible electrode kinetics, iR effects are associated with large increasaes in peak separation. See: L. Roullier and E. Laviron, J. Electroanal. Interfacial Electrochem., 1983, 157, 193 Search PubMed.
  19. Peak potentials were completely restored although peak areas were ca. 10% smaller than measured at the start of the experiment.
Click here to see how this site uses Cookies. View our privacy policy here.