Convergent synthesis of the ABCDE ring framework of ciguatoxin

(Note: The full text of this document is currently only available in the PDF Version )

Kenji Maeda, Tohru Oishi, Hiroki Oguri and Masahiro Hirama


Abstract

An alkylation–metathesis sequence is shown to be a powerful method to synthesize the ABCDE ring framework of ciguatoxin 1.


References

  1. M. Murata, A. M. Legrand, Y. Ishibashi, M. Fukui and T. Yasumoto, J. Am. Chem. Soc., 1990, 112, 4380 CrossRef CAS; M. Satake, A. Morohashi, H. Oguri, T. Oishi, M. Hirama, N. Harada and T. Yasumoto, J. Am. Chem. Soc., 1997, 119, 11325 CrossRef CAS.
  2. For recent synthetic studies, see: T. Oishi, M. Shoji, K. Maeda, N. Kumahara and M. Hirama, Synlett, 1996, 1165 Search PubMed; T. Oishi, K. Maeda and M. Hirama, Chem. Commun., 1997, 1289 CAS; T. Oishi, M. Shoji, N. Kumahara and M. Hirama, Chem. Lett., 1997, 845 RSC; T. Oishi, Y. Nagumo and M. Hirama, Synlett, 1997, 307 CrossRef CAS; S. Hosokawa and M. Isobe, Synlett, 1996, 351 CAS; T. Oka, K. Fujiwara and A. Murai, Tetrahedron, 1996, 37, 1179 CrossRef CAS; E. Alvarez, M. Delgado, M. T. Díaz, L. Hanxing, R. Pérez and J. D. Martín, Tetrahedron Lett., 1996, 37, 2865; J. L. Ravelo, A. Regueiro, E. Rodríguez, J. A. Vera and J. D. Martín, Tetrahedron Lett., 1996, 37, 2869 CrossRef CAS; S. Hosokawa, K. Kira and M. Isobe, Chem. Lett., 1996, 473 CrossRef CAS; M. Inoue, M. Sasaki and K. Tachibana, Tetrahedron Lett., 1997, 38, 1611 CAS; T. Oka, K. Fujiwara and A. Murai, Tetrahedron Lett., 1997, 38, 8053 CrossRef CAS; M. Inoue, M. Sasaki and K. Tachibana, Angew. Chem., Int. Ed., 1998, 37, 965 CrossRef CAS; M. Sasaki, T. Noguchi and K. Tachibana, Tetrahedron lett., 1999, 40, 1337 CrossRef CAS.
  3. T. Oishi, Y. Nagumo and M. Hirama, Chem. Commun., 1998, 1041 RSC.
  4. C. H. Marzabadi and C. D. Spilling, J. Org. Chem., 1993, 58, 3761 CrossRef CAS.
  5. P. Schwab, R. H. Grubbs and J. W. Ziller, J. Am. Chem. Soc., 1996, 118, 100 CrossRef CAS.
  6. M. Delgago and J. D. Martín, Tetrahedron Lett., 1997, 38, 6299 CrossRef CAS.
  7. R. Johansson and B. Samuelsson, J. Chem. Soc., Chem. Commun., 1984, 201 RSC.
  8. I. Kadota, A. Ohno, Y. Matsukawa and Y. Yamamoto, Tetrahedron Lett., 1998, 39, 6373 CrossRef CAS.
  9. We found that reduction of the ketal rather than the corresponding hemiacetal using Et3SiH and BF3·OEt2 gave a remarkably higher yield of the reduction product; 0–70% yield in the case of hemiacetal under the same reduction conditions. Also see ref. 3.
  10. D. L. Lewis, J. K. Cha and Y. Kishi, J. Am. Chem. Soc., 1982, 104, 4976 CrossRef CAS.
  11. The stereochemistry of 2 was unambiguously determined by 1H NMR analysis. Selected data for 2: δH(500 MHz, CDCl3) 0.98 (9H, s, TBDPS), 0.99 (9H, s, TBDPS), 1.55 (1H, q, J 11.4, H14ax), 1.53–1.60 (1H, m, H22), 1.62–1.69 (1H, m, H22′), 1.71–1.78 (1H, m, H21), 2.05–2.14 (1H, m, H21′), 2.29 (1H, dt, J 11.4, 4.1, H14eq), 2.31-2.38 (1H, m, H8), 2.64 (1H, ddd, J 16.0, 7.7, 3.5, H8′), 3.08–3.15 (2H, m, H12, H13), 3.28(0)(1H, ddd, J 8.4, 7.7, 3.8, H9), 3.28(5)(1H, ddd, J 11.4, 8.9, 4.1, H15), 3.31–3.40 (2H, m, H20, H24), 3.35 (1H, dd, J 9.0, 8.4, H10), 3.48 (1H, t, J 9.0, H11), 3.62–3.70 (3H, m, H23, H25, H25′), 3.88 (1H, dq, J 8.9, 2.3, H16), 4.01 (1H, dq, J 16.0, 2.8, H5), 4.12 (1H, dq, J 9.0, 2.3, H19), 4.29 (1H, dd, J 16.0, 5.7, H5′), 4.83 (1H, d, J 11.5, CH2Ph), 4.89 (1H, d, J 11.5, CH2Ph), 5.64 (1H, dt, J 13.0, 2.3, H18), 5.77 (1H, dddd, J 11.8, 5.1, 3.5, 2.8, H7), 5.83 (1H, dt, J 13.0, 2.3, H17), 5.87 (1H, ddt, J 11.8, 5.7, 2.8, H6), 7.23–7.43 (17H, m, Ph), 7.52–7.56 (4H, m, Ph), 7.59–7.66 (4H, m, Ph).
Click here to see how this site uses Cookies. View our privacy policy here.