A Lewis acid dependent asymmetric Diels–Alder process in the cyclization of new chiral acrylamides with dienes

(Note: The full text of this document is currently only available in the PDF Version )

Doo Han Park, Sung Han Kim, Sam Min Kim, Jin Dong Kim and Yong Hae Kim


Abstract

Diels–Alder cycloadditions of chiral acrylamides with cyclopentadiene proceed with high diastereofacial selectivity, giving either endo-R to endo-S products depending of the Lewis acid used.


References

  1. For reviews, see L. A. Paquett, Asymmetric Synthesis, ed. J. D. Morrison, Academic Press, New York, 1994, vol. 3 Search PubMed; W. Oppolzer, Angew. Chem., Int. Ed. Engl., 1984, 23, 876 Search PubMed; H. Waldmann, Synthesis, 1994, 535 CrossRef.
  2. (a) D. A. Evans, K. T. Chapman and J. Bisaha, J. Am. Chem. Soc., 1986, 110, 1238 and references therein; (b) K. Kimura, K. Murata, K. Otsuka, T. Shizuka, M. Maratake and T. Kunieda, Tetrahedron Lett., 1992, 33, 4461 CrossRef CAS; (c) S. Castellino and W. J. Dwight, J. Am. Chem. Soc., 1993, 115, 2986 CrossRef CAS; (d) S. Castellino, J. Org. Chem., 1990, 55, 5197 CrossRef CAS; (e) M. R. Banks, A. J. Blake, A. R. Brown, J. I. G. Cadosan, S. Gavr, I. Gosney, P. K. G. Hodgson and P. Thorburn, Tetrahedron Lett., 1994, 35, 489 CrossRef CAS; (f) N. Hashimoto, T. Ishizuha and T. Kunieda, Tetrahedron Lett., 1994, 35, 721 CrossRef; (g) L. F. Tietze, C. Schneider and A. Montenbruck, Angew. Chem., Int. Ed. Engl., 1994, 33, 980 CrossRef.
  3. W. Oppolzer, M. Wills, M. J. Kelly, M. Signer and J. Blagg, Tetrahedron Lett., 1990, 35, 5015 CrossRef CAS; W. Oppolzer, Pure Appl. Chem., 1990, 62, 1241 CrossRef CAS and references therein W. Oppolzer, C. Chapus, G. M. Dao, D. Reichlin and T. Godel, Tetrahedron Lett., 1982, 23, 4781 Search PubMed; D. P. Curran, B. H. Kim, J. Daugherty and T. A. Heffner, Tetrahedron Lett., 1988, 29, 3555 CrossRef CAS; W. Oppolzer, C. Chapuis and G. Bernardinelli, Helv. Chim. Acta, 1984, 67, 1397 CrossRef CAS.
  4. (a) T. Poll, O. Metter and G. Helmechen, Angew. Chem., Int. Ed. Engl., 1985, 24, 112 CrossRef; (b) T. Poll, G. Helmechen and B. Bauer, Tetrahedron Lett., 1984, 25, 2191 CrossRef CAS; (c) W. Choy, L. A. Reed, III and S. Masamune, J. Org. Chem., 1983, 48, 1137 CrossRef CAS; (d) W. Oppolzer, C. Chapuis, G. M. Dao, D. Reichlin and J. T. Godel, Tetrahedron Lett., 1982, 46, 4781 CrossRef CAS.
  5. (a) Y. Kawanami, T. Katsuki and M. Yamaguchi, Bull. Chem. Soc. Jpn., 1987, 60, 4190 CAS; (b) H. Waldmann, J. Org. Chem., 1988, 53, 6133 CrossRef CAS; Tetrahedron Lett., 1989, 30, 4227 Search PubMed; (c) M. P. Buence, C. A. Cativiela and J. A. Magorall, J. Org. Chem., 1991, 56, 6551 CrossRef; (d) R. K. Boeckman, Jr., S. G. Nelson and M. D. Gaul, J. Am. Chem. Soc., 1992, 114, 2258 CrossRef.
  6. (a) Y. H. Kim, D. H. Park and I. S. Byun, J. Org. Chem., 1993, 58, 4511 CrossRef CAS; (b) Y. H. Kim, S. H. Kim and D. H. Park, Tetrahedron Lett., 1993, 34, 6063 CrossRef CAS; (c) Y. H. Kim and J. Y. Choi, Tetrahedron Lett., 1996, 37, 5543 CrossRef CAS.
  7. In a typical experimental, a Lewis acid (1 mmol) was added to a solution of 1(0.5 mmol) in CH2Cl2(5 ml) under N2. After stirring 10 min, 4(5 mmol) was added. The reaction mixture was stirred while following the reaction by TLC, quenched with 1 M HCl solution, and then extracted with CH2Cl2 three times. The organic layer was dried over anhydrous MgSO4 and concentrated in vacuo. The endo configurations were determined by the known iodolactonizations of 6a–8a with I2 in DMF [8a lactone: [α]D— 110.6 (c 1.0, CHCl3)][ref. 5(b)]. The ratio of endo-R and endo-S was determined by HPLC analysis using a chiral column (Daicel OD, PriOH–n-hexane 1 : 9).
  8. J. A. Berson, A. Remanick, S. Suzuki, D. R. Warnhoff and D. Willner, J. Am. Chem. Soc., 1961, 83, 3986 CrossRef CAS; W. Krimse and R. Siegfried, J. Am. Chem. Soc., 1983, 105, 950 CrossRef.
  9. (a) The 13C NMR spectrum of the mixture of 6a and SnCl4(1 : 1) was taken to show the significant chemical shift changes of the acrylamide carbonyl carbon (δ 163.8) and ester carbonyl carbon (δ 171.7) to δ 169.6 and 175.0, respectively, which support formation of a seven-membered ring complex between 6a and SnCl4. (b) In the case of 6a–Et2AlCl (1 : 2) no significant chemical shift changes for the two carbonyl carbons could be observed.
Click here to see how this site uses Cookies. View our privacy policy here.