Formation of bamboo-like nanocarbon and evidence for the quasi-liquid state of nanosized metal particles at moderate temperatures

(Note: The full text of this document is currently only available in the PDF Version )

Yongdan Li, Jiuling Chen, Yanmei Ma, Jinbao Zhao, Yongning Qin and Liu Chang


Abstract

Carbon nano-filament formation in hydrocarbon and syngas based catalytic processes is fatal for supported metal catalysts as this leads to deactivation and crushing, and hence limitation of carbon deposition has been a major topic in catalysis.1–5 Recently, the deliberate preparation of catalytically grown nanocarbons has been investigated because of their specific structure and potential for application in many fields.6–8 Many nanocarbon conformations have been reported, such as tubular, coiled, helical, branched, octopus, etc. and have been found to be sensitive to the reaction conditions and catalyst properties.9–14 Catalytic hydrocarbon decomposition9–13 or arc-discharge evaporation of graphite14–18 have been often used as preparation methods, though in the latter case, the presence of a metal is necessary as catalyst in the form of either vapor or droplets of melt. The selective preparation of a given formation is a challenge to catalysis researchers. Here, several nanocarbon conformations are shown to be formed with high morphological purity from methane on a copper–nickel–alumina catalyst, and some interesting phenomena related to the nanosized metal are reported.


References

  1. D. L. Trimm, Catal. Rev.-Sci. Eng., 1977, 16, 155 Search PubMed.
  2. C. H. Bartholomew, Catal. Rev.-Sci. Eng., 1982, 24, 67 Search PubMed.
  3. X. Y. Wu, J. Y. Zhang and L. Chang, Stud. Surf. Sci. Catal., 1987, 34, 208.
  4. Q. Zhuang, Y. N. Qin and L. Chang, Appl. Catal., 1991, 70, 1 Search PubMed.
  5. R. T. K. Baker, Stud. Surf. Sci. Catal., 1991, 68, 1 CAS.
  6. J. W. Mintmire and C. T. White, Carbon, 1995, 33, 893 CrossRef CAS.
  7. R. S. Ruoff and D. C. Lorents, Carbon, 1995, 33, 925 CrossRef CAS.
  8. R. T. K. Baker, Carbon, 1989, 27, 315 CrossRef CAS.
  9. Y. D. Li, J. L. Chen, L. Chang and Y. N. Qin, J. Catal., 1998, 178, 76 CrossRef CAS.
  10. Y. D. Li, J. L. Chen and L. Chang, Appl. Catal. A, 1997, 163, 45 CrossRef CAS.
  11. N. M. Rodriguez, J. Mater. Res., 1993, 8, 3233 CrossRef CAS.
  12. S. Motojima, S. Asakura, T. Kasemura, S. Takeuchi and H. Iwanaga, Carbon, 1996, 34, 289 CrossRef CAS.
  13. G. G. Tibbetts, J. Cryst. Growth, 1984, 66, 632 CrossRef CAS.
  14. Y. Saito, Carbon, 1995, 33, 979 CrossRef CAS.
  15. C. H. Kiang, W. A. Goddard, R. Beyers and D. S. Bethune, Carbon, 1995, 33, 903 CrossRef CAS.
  16. S. Amelinckx, X. B. Zhang, O. Bernaerts, X. F. Zhang, V. Ivanov and J. B. Nagy, Science, 1994, 265, 635 CrossRef CAS.
  17. X. K. Wang, X. W. Lin, V. P. Dravid, J. B. Ketterson and R. P. H. Chang, Appl. Phys. Lett., 1993, 62, 1881 CrossRef CAS.
  18. W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao and G. Wang, Science, 1996, 274, 1701 CrossRef CAS.
  19. L. B. Adveeva, O. V. Goncharova, D. I. Kochubey, V. I. Zaikovskii, L. M. Plyasova, B. N. Novgorodov and Sh. K. Shaikhutdinov, Appl. Catal. A, 1996, 141, 117 CrossRef.
  20. V. V. Kovalevski and A. N. Safronov, Carbon, 1998, 36, 963 CrossRef CAS.
  21. Eryuan Hejin Zhuangtai Tuji (Phase Diagram of Binary Alloy Systems), ed. J. Q. Yu, W. Z. Yi, B. D. Chen and H. J. Chen, Shanghai Keji Publisher, Shanghai, China, 1987, p. 249(in Chinese) Search PubMed.
  22. I. Alstrup and M. T. Taveres, J. Catal., 1993, 139, 513 CrossRef CAS.
  23. A. J. H. M. Kock, P. K. de Bokx, E. Boellaard, W. Klop and J. W. Geus, J. Catal., 1985, 96, 468 CAS.
  24. Tiehejin Cidian (Dictionary of Iron Alloys), ed. X. P. Zhang and C. J. Liu, Liaoning Keji Publisher, Shenyang, China, 1996, p. 317(in Chinese) Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.