Theoretical evidence of a feasible concerted antaraantara cycloaddition

(Note: The full text of this document is currently only available in the PDF Version )

José I. García, José A. Mayoral and Luis Salvatella


Abstract

For the first time it is demonstrated, based on theoretical considerations, that concerted antara–antara cycloadditions are chemically possible, and even easy to observe for molecules with the appropriate geometry.


References

  1. J. A. Berson, Tetrahedron, 1992, 48, 3 CrossRef CAS.
  2. R. Huisgen, Angew. Chem., 1968, 80, 329; Angew. Chem., Int. Ed. Engl., 1968, 7, 321 Search PubMed.
  3. W. Carruthers, Cycloaddition Reactions in Organic Synthesis, Pergamon, Oxford, 1990 Search PubMed.
  4. R. B. Woodward and R. Hoffmann, Angew. Chem., 1969, 81, 797; Angew. Chem., Int. Ed. Engl., 1969, 8, 781 Search PubMed; The Conservation of Orbital Symmetry, Verlag Chemie, Weinheim, 1970 Search PubMed.
  5. K. N. Houk, Y. Li and J. D. Evanseck, Angew. Chem., 1992, 104, 711 CAS; Angew. Chem., Int. Ed. Engl., 1992, 31, 682 Search PubMed.
  6. J. Sauer and R. Sustmann, Angew. Chem., 1980, 92, 773 CrossRef CAS; Angew. Chem., Int. Ed. Engl., 1980, 19, 779 Search PubMed.
  7. A. Padwa, 1,3-Dipolar Cycloaddition Chemistry, Vol. 2, Wiley, New York, 1984 Search PubMed.
  8. H. Hart, T. Miyashi, D. N. Buchanan and S. Sasson, J. Am. Chem. Soc., 1974, 96, 4857 CrossRef CAS.
  9. S. Yamabe, T. Dai, T. Minato, T. Machiguchi and T. Hasegawa, J. Am. Chem. Soc., 1996, 118, 6518 CrossRef CAS.
  10. F. Bernardi, A. Bottoni, M. A. Robb, H. B. Schlegel and G. Tonachini, J. Am. Chem. Soc., 1985, 107, 2260 CrossRef CAS.
  11. Calculations were carried out by means of the Gaussian 94 package (ref. 12) using the Hartree-Fock and Density Functional Theory [through the B3LYP hybrid functional (ref. 13)] levels and the 6-31G(d) basis set (ref. 14). B3LYP/6-31G(d) calculations are known to perform well as regards cycloaddition reactions (ref. 15). The nature of all stationary points (reactants, transition structures and adducts) was tested by means of frequency calculations, which also served to calculate the thermodynamic parameters of the reactions considered..
  12. Gaussian 94 (Revision C.2), M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Latham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakura, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andrés, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. J. P. Stewart, M. Head-Gordon, C. González and J. A. Pople, Gaussian Inc., Pittsburgh, PA, 1995.
  13. A. D. Becke, J. Chem. Phys., 1993, 98, 5648 CrossRef CAS; C. Lee, W. Yang and R. Parr, Phys. Rev. B, 1988, 37, 785 CrossRef CAS.
  14. W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257 CrossRef CAS.
  15. O. Wiest and K. N. Houk, Top. Curr. Chem., 1996, 183, 1 CAS; V. Barone and R. Arnaud, Chem. Phys. Lett., 1996, 251, 393 CrossRef CAS; V. Barone, R. Arnaud, P. Y. Chavant and Y. Vallée, J. Org. Chem., 1996, 61, 5121 CrossRef CAS; E. Goldstein, B. Beno and K. N. Houk, J. Am. Chem. Soc., 1996, 118, 6036 CrossRef CAS; K. N. Houk, B. R. Beno, M. Nendel, K. Black, H. Y. Yoo, S. Wilsey and J. K. Lee, J. Mol. Struct. (THEOCHEM), 1997, 398, 169 CrossRef; B. S. Jursic, J. Org. Chem., 1997, 62, 3046 CrossRef CAS; O. Wiest, D. C. Montiel and K. N. Houk, J. Phys. Chem. A, 1997, 101, 8378 CrossRef CAS; J. Liu, S. Niwayama, Y. You and K. N. Houk, J. Org. Chem., 1998, 63, 1064 CrossRef CAS; J. I. García, V. Martínez-Merino, J. A. Mayoral and L. Salvatella, J. Am. Chem. Soc., 1998, 120, 2415 CrossRef CAS.
  16. The transition structure search was performed without any geometrical constraint at the HF/6-31G(d) and B3LYP/6-31G(d) levels, leading to very similar geometries. The nature of the transition structure was fully characterized by the presence of only one imaginary frequency, correponding to the symmetric stretching of the four atoms involved in the formation of the sigma bonds. Frequency calculations were only carried out at the HF/6-31G(d) level, due to the size of the system..
Click here to see how this site uses Cookies. View our privacy policy here.