Hydrolysis of DNA and RNA by lanthanide ions: mechanistic studies leading to new applications

(Note: The full text of this document is currently only available in the PDF Version )

Makoto Komiyama, Naoya Takeda and Hidemi Shigekawa


Abstract

A few years ago, the remarkable catalytic activity of lanthanide ions for the hydrolysis of nucleic acids was discovered. With CeIV, DNA was hydrolysed under physiological conditions. For RNA hydrolysis, the last three lanthanide ions (TmIII, YbIII, and LuIII) are superb. Furthermore, artificial restriction enzymes for site-selective scission of DNA and RNA, essential tools for the future biotechnology, have been prepared by using the lanthanide complexes. The present article emphasizes the mechanistic aspects of the catalyses of these metal ions. Both DNA hydrolysis and RNA hydrolysis involve the cooperation of acid catalysis (by metal ion and/or metal-bound water) and base catalysis (by metal-bound hydroxide). The magnitudes of contributions of these catalyses, as well as the positions where they work, are primarily governed by the relative height of the energy-barrier for the formation of the pentacoordinated intermediate and that for its breakdown. The following conclusions have been obtained on the basis of various kinetic and spectroscopic evidence: (1) for the hydrolysis of both DNA and RNA, the catalytically active species are dinuclear hydroxo-clusters, (2) CeIV enormously activates DNA and promotes the formation of the pentacoordinated intermediate, and (3) the catalysis for RNA hydrolysis is mainly ascribed to the promotion of breakdown of the pentacoordinated intermediate.


References

  1. Recent reviews: M. Komiyama and J. Sumaoka, Curr. Opin. Chem. Biol., 1998, 2, 751 Search PubMed; M. Oivanen, S. Kuusela and H. Lönnberg, Chem. Rev., 1998, 98, 961 CrossRef CAS; B. N. Trawick, A. T. Daniher and J. K. Bashkin, Chem. Rev., 1998, 98, 939 CrossRef CAS; G. Pratviel, J. Bernadou and B. Meunier, in Advances in Inorganic Chemistry, ed. A. G. Sykes, Academic Press, San Diego, 1998, vol. 45, p. 251 CrossRef CAS; D. M. Perreault and E. V. Anslyn, Angew. Chem., Int. Ed. Engl., 1997, 36, 432 CrossRef CAS; J. Chin, Curr. Opin. Chem. Biol., 1997, 1, 514 Search PubMed; E. Kimura and T. Koike, in Advances in Inorganic Chemistry, ed. A. G. Sykes, Academic Press, San Diego, 1997, vol. 44, p. 229 and references cited therein CrossRef.
  2. The scission site of a restriction enzyme, which recognizes a sequence of 6 DNA bases, appears every 46 DNA bases (in average). If the DNA of the human beings, composed of more than 109 DNA bases, is treated with this restriction enzyme, the scission occurs at more than 105 sites.
  3. The half-life of the phosphodiester linkage in DNA at pH 7 and 30 °C is estimated to be 200 million years. Although the linkage in RNA is much more reactive than that in DNA, its half-life is still 1000 years or so.
  4. Supercoiled DNA, which is activated by strain other factors was reportedly cleaved via the hydrolytic pathway: L. A. Basile, A. L. Raphael and J. K. Barton, J. Am. Chem. Soc., 1987, 109, 7550 Search PubMed; L. M. T. Schnaith, R. S. Hanson and L. Que, Jr., Proc. Natl. Acad. Sci. U.S.A., 1994, 91, 569 CrossRef CAS; S. Hashimoto and Y. Nakamura, J. Chem. Soc., Perkin Trans. 1, 1996, 2623 CAS; R. Hettich and H.-J. Schneider, J. Am. Chem. Soc., 1997, 119, 5638 RSC.
  5. DNA hydrolysis: Y. Matsumura and M. Komiyama, Nucleic Acids Symp. Ser., 1992, 27, 33 Search PubMed; M. Komiyama, K. Matsumura, K. Yonezawa and Y. Matsumoto, Chem. Express, 1993, 8, 85 Search PubMed; T. Shiiba, K. Yonezawa, N. Takeda, Y. Matsumoto, M. Yashiro and M. Komiyama, J. Mol. Catal., 1993, 84, L21 Search PubMed.
  6. RNA hydrolysis: K. Matsumura and M. Komiyama, J. Chem. Soc., Chem. Commun., 1992, 640 Search PubMed; J. R. Morrow, L. A. Buttrey, V. M. Shelton and K. A. Berback, J. Am. Chem. Soc., 1992, 114, 1903 RSC; J. R. Morrow and V. M. Shelton, New J. Chem., 1994, 18, 371 CrossRef CAS; R. Breslow and D.-L. Huang, Proc. Natl. Acad. Sci. U.S.A., 1991, 88, 4080 Search PubMed.
  7. On the hydrolysis of various activated phosphoesters, see ref. 1.
  8. (a) M. Komiyama, T. Shiiba, T. Kodama, N. Takeda, J. Sumaoka and M. Yashiro, Chem. Lett., 1994, 1025 CAS; (b) B. K. Takasaki and J. Chin, J. Am. Chem. Soc., 1994, 116, 1121 CrossRef CAS.
  9. M. Komiyama, N. Takeda, Y. Takahashi, H. Uchida, T. Shiiba, T. Kodama and M. Yashiro, J. Chem. Soc., Perkin Trans. 2, 1995, 269 RSC.
  10. K. Matsumura and M. Komiyama, J. Biochem., 1997, 122, 387 CAS.
  11. Sequence-selective DNA scission: M. Komiyama, T. Shiiba, Y. Takahashi, N. Takeda, K. Matsumura and T. Kodama, Supramol. Chem., 1994, 4, 31 Search PubMed; M. Komiyama, N. Takeda, T. Shiiba, Y. Takahashi, Y. Matsumoto and M. Yashiro, Nucleosides Nucleotides, 1994, 13, 1297 CAS; M. Komiyama, J. Biochem., 1995, 118, 665 CAS.
  12. Sequence-selective RNA scission: K. Matsumura, M. Endo and M. Komiyama, Chem. Soc., Chem. Commun., 1994, 2019 Search PubMed; J. Hall, D. Hüsken and R. Häner, Nucleosides Nucleotides, 1997, 16, 1357 RSC; D. Magda, M. Wright, S. Crofts, A. Lin and J. L. Sessler, J. Am. Chem. Soc., 1997, 119, 6947 CAS.
  13. J. Sumaoka, Y. Azuma and M. Komiyama, Chem. Eur. J., 1998, 4, 205 CrossRef CAS.
  14. N. Takeda, Y. Okada and M. Komiyama, unpublished results.
  15. The electrophilicity of the phosphorus atom is not much altered by the O →S substitution, since the substitution of non-bridging oxygen in the phosphate to sulfur hardly affects the rate of hydrolysis. In Tp-OCH2CF3, the perturbation on the phosphorus atom is still smaller. In the CeIV-induced hydrolysis of Tp-OT, the P–O(3′) bond and the P–O(5′) bond are cleaved at almost the same rates (the resultant 5′-and 3′-monophosphates of thymidine are rapidly hydrolysed to thymidine as the final product, and thus are not much accumulated: see ref. 9). In the hydrolysis of Tp-ST and Tp-OCH2CF3, the P–S bond and P–O(5′) bond are exclusively cleaved.
  16. Homogeneous hydrolysis of DNA at pH 7 by CeIV–saccharide complexes was reported: A. Kajimura, J. Sumaoka and M. Komiyama, Carbohydr. Res., 1998, 309, 345 Search PubMed.
  17. F. B. Charles Jr. and R. E. Mesmer, The Hydrolysis of Cations, Wiley, New York, 1976, p. 138 Search PubMed.
  18. J. Sumaoka, N. Takeda, Y. Okada, H. Takahashi, H. Shigekawa and M. Komiyama, Nucleic Acids Symp. Ser., 1998, 39, 137 Search PubMed.
  19. J. Sumaoka, K. Furuki and M. Komiyama, unpublished results.
  20. J. Sumaoka, S. Miyama and M. Komiyama, J. Chem. Soc., Chem. Commun., 1994, 1755 RSC.
  21. H. Shigekawa, H. Ikawa, R. Yoshizaki, Y. Iijima, J. Sumaoka and M. Komiyama, Appl. Phys. Lett., 1996, 68, 1433 CrossRef CAS.
  22. H. Shigekawa, M. Ishida, K. Miyake, R. Shioda, Y. Iijima, T. Imai, H. Takahashi, J. Sumaoka and M. Komiyama, Appl. Phys. Lett., 1999, 74, 460 CrossRef CAS.
  23. The EXAFS and XANES measurements were carried out on samples frozen in liquid nitrogen.
  24. Various characteristic properties of Ce compounds have been interpreted in termsof the formation of similar hybrid orbitals. For example, CeRu2, CeCo2, and CeRh3 are non-magnetic, but show 4f-derived emission in their resonant photoemission spectra Apparently, the 4f character is delocalized by the hybridization. The number of 4f electrons should be between 0 and 1 depending on the amount of the chargetransfer: A. Fujimori, Phys. Rev. B, 1983, 28, 4489 Search PubMed; A. Bianconi, H. Marcelli, R. Dexpert, A. Karnatak, T. J. Kotani and J. Petiau, Phys. Rev. B, 1987, 35, 806 CrossRef CAS and references cited therein.
  25. N. Takeda, T. Imai, M. Irisawa, J. Sumaoka, M. Yashiro, H. Shigekawa and M. Komiyama, Chem. Lett., 1996, 599 CAS This CeIV/PrIII combination is the most active catalyst for DNA hydrolysis ever reported.
  26. J. Burgess, Metal Ions in Solution, Wiley, New York, 1978, p. 267 Search PubMed.
  27. Alternatively, PrIII can provide its metal-bound hydroxide as the nucleophile. The hydroxide is a better nucleophile than the CeIV-bound hydroxide.
  28. K. A. Burkov, L. S. Lilich, N. D. Ngo and A. Yu. Smirnov, Russ. J. Inorg. Chem., 1973, 18, 797.
  29. P. Hurst, B. K. Takasaki and J. Chin, J. Am. Chem. Soc., 1996, 118, 9982 CrossRef CAS.
  30. X. Liu and C. B. Reese, Tetrahedron Lett., 1995, 36, 3413 CrossRef CAS; J. B. Thomson, B. K. Patel, V. Jimenez, K. Eckart and F. Eckstein, J. Org. Chem., 1996, 61, 6273 CrossRef CAS; R. G. Kuimelis and L. W. McLaughlin, Nucleic Acids Res., 1995, 23, 4753 CAS; D.-M. Zhou, N. Usman, F. E. Wincott, J. Matulic-Adamic, M. Orita, L.-H. Zhang, M. Komiyama, P. K. R. Kumar and K. Taira, J. Am. Chem. Soc., 1996, 118, 5862 CrossRef CAS.
  31. T. Shiiba and M. Komiyama, Tetrahedron Lett., 1992, 33, 5571 CrossRef CAS.
  32. The Brønsted relationship indicates that the intrinsic activity of acid catalysts increases with decreasing pKa. However, the concentration of the active species (in the acidic form) at a predeterm ined pH decreases in this order. Thus, thenet efficiency of the catalysis determ ined by (the intrinsic activity of active species)×(the concentration of active species), takes the maximum when the pKa is close to the reaction pH (see M. L. Bender, R. J. Bergeron and M. Komiyama, The Bioorganic Chemistry of Enzymatic Catalysis, Wiley, New York, 1984, ch. 6 Search PubMed.
  33. Some of the complexes in ref. 4 were proposed to be active for the hydrolysis of non-supercoiled DNA.
  34. M. Yashiro, A. Ishikubo and M. Komiyama, J. Chem. Soc., Chem. Commun., 1995, 1793 RSC.
  35. M. Yashiro, A. Ishikubo and M. Komiyama, J. Chem. Soc., Chem. Commun., 1997, 83 RSC.
  36. S. Matsuda, A. Ishikubo, A. Kuzuya, M. Yashiro and M. Komiyama, Angew. Chem., Int. Ed., 1998, 37, 3284 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.