A novel synthesis of chiral cyclopentyl- and cyclohexyl-amines
(Note: The full text of this document is currently only available in the PDF Version )
Pedro Pinho and Pher G. Andersson
Abstract
A new route to multifunctionalised chiral cyclopentyl- and cyclohexyl-amines was developed by means of a new reaction involving the ring opening of a 2-azabicyclo-[2.2.1] or -[2.2.2] structure in high yields.
References
S.-Y. Sung and A. W. Frahm, Arch. Pharm. Pharm. Med. Chem., 1996, 329, 291 Search PubMed; S. Nakamura, K. Karasawa, N. Tanaka, H. Yonehara and H. Umezawa, J. Antibiot., Ser. A, 1960, 392 Search PubMed; H. Nagata, T. Taniguchi and K. Ogasawara, Tetrahedron: Asymmetry, 1997, 8, 2679 CrossRefCAS.
T. Kusaka, H. Yamamoto, M. Shibata, M. Muroi, T. Kishi and K. Mizuno, J. Antibiot., 1968, 255 CAS; M. Arita, K. Adachi, H. Sawai and M. Ohno, Nucleic Acids Res. Symp. Ser., 1983, 12, 25 Search PubMed.
E. L. White, W. B. Parker, L. J. Macy, S. C. Shaddix, G. McCaleb, J. A. Secrist III, R. Vince and W. M. Shannon, Biochem. Biophys. Res. Commun., 1989, 161, 393 CAS; R. Vince, M. Hua, J. Brownell, S. Daluge, F. Lee, W. M. Shannon, G. C. Lavelle, J. Qualls, O. S. Weislow, R. Kiser, P. G. Canonico, R. H. Schultz, V. L. Narayanan, J. G. Mayo, R. H. Showmaker and M. R. Boyd, Biochem. Biophys. Res. Commun., 1988, 156, 1046 CAS.
Other related biologically active compounds. Neplanocin A: M. Arita, K. Adachi, H. Sawai and M. Ohno, Nucleic Acids Res. Symp. Ser., 1983, 12, 25 Search PubMed; M.-I. Lim, J. D. Moyer, R. L. Cysyk and V. E. Marquez, J. Med. Chem., 1984, 27, 1536 Search PubMed; M.-I. Lim and V. E. Marquez, Tetrahedron Lett., 1983, 24, 5559 CrossRefCAS Guanine derivatives: A. B. Reitz, M. G. Goodman, B. L. Pope, D. C. Argentieri, S. C. Bell, L. E. Burr, E. Chourmouzis, J. Come, J. H. Goodman, D. H. Klaubert, B. E. Maryanoff, M. E. McDonnell, M. S. Rampulla, M. R. Schott and R. Chen, J. Med. Chem., 1994, 37, 3561 CrossRefCAS Adenosine analogues: Y. F. Shealy and J. D. Clayton, J. Am. Chem. Soc., 1966, 88, 3885 Search PubMed Tubercidin analogues: J. A. Montgomery and K. Hewson, J. Med. Chem., 1967, 10, 665 CrossRefCAS Noraristeromycin: S. M. Siddiqi, F. P. Oertel, X. Chen and S. W. Schneller, J. Chem. Soc., Chem. Commun., 1993, 708 Search PubMed Adenosine deaminase inhibitors: H. J. Schaeffer, D. D. Godse and G. Liu, J. Pharm. Sci., 1964, 53, 1510 CrossRef γ-Aminobutyric acid analogue: M. J. Milewska and T. Polonski, Tetrahedron: Asymmetry, 1994, 5, 359 Search PubMed Carboxylic sugars and nucleosides: S. Ranganathan and K. S. George, Tetrahedron, 1997, 53, 3347 CrossRefCAS; M. J. Mulvihill, M. D. Surman and M. J. Miller, J. Org. Chem., 1998, 63, 4874 Search PubMed.
(a) M. J. Södergren and P. G. Andersson, Tetrahedron Lett., 1996, 37, 7577 CrossRef;
(b) D. A. Alonso, D. Guijarro, P. Pinho, O. Temme and P. G. Andersson, J. Org. Chem., 1998, 63, 2749 CrossRefCAS;
(c) D. Guijarro, P. Pinho and P. G. Andersson, J. Org. Chem., 1998, 63, 2530 CrossRef;
(d) P. Pinho, D. Guijarro and P. G. Andersson, Tetrahedron, 1998, 54, 7897 CrossRefCAS;
(e) M. J. Södergren and P. G. Andersson, J. Am. Chem. Soc., 1998, 120, 10760 CrossRef;
(f) D. A. Alonso, S. K. Bertilsson, S. Y. Johnsson, S. J. M. Nordin, M. Södergren and P. G. Andersson, J. Org. Chem., 1999, in the press Search PubMed.
L. Stella, H. Abraham, J. Feneu-Dupont, B. Tinant and J. P. Declercq, Tetrahedron Lett., 1990, 31, 2603 CrossRefCAS; H. Abraham and L. Stella, Tetrahedron, 1992, 48, 9707 CrossRefCAS.
The absolute configuration of the aza-Diels–Alder adduct has been determined by means of X-ray analysis of a derivative, see: H. Nakano, N. Kumagai, C. Kabuto, H. Matsuzaki and H. Hongo, Tetrahedron: Asymmetry, 1995, 6, 1233 Search PubMed.
For interesting compounds containing this structure unit, see for example: G. E. Keck and S. A. Fleming, Tetrahedron Lett., 1978, 48, 4763 Search PubMed; T. Hudlicky and H. F. Olivo, Tetrahedron Lett., 1991, 32, 6077 CrossRef; F. Chretien, S. I. Ahmed, A. Masion and Y. Chapleur, Tetrahedron, 1993, 49, 7463 CrossRefCAS; S. Grabowski, J. Armbruster and H. Prinzbach, Tetrahedron Lett., 1997, 38, 5485 CrossRefCAS; H. Noguchi, T. Aoyama and T. Shioiri, Tetrahedron Lett., 1997, 38, 2883 CrossRefCAS.
Representative spectroscopic and analytical data. (1R,3S)-1-Tosylamino-3-vinylcyclopentane (4). Magnesium metal (3.0 g, 123 mmol) was placed in a 50 mL two-neck round-bottom flask loaded with a magnetic bar. To one neck a condenser was adapted and to the other a septum. The system was evacuated and placed under argon, after which the magnesium was suspended in dry THF (3 mL). The stirring suspension was then set to reflux and a solution of compound 3(6.0 g, 17 mmol) in dry THF (20 mL) was added in one portion via syringe. After stirring for 15 min a small amount of 1,2-dibromoethane was added to activate the magnesium and the mixture was heated at reflux for 24 h. The reaction was then cooled to 0 °C and quenched by addition of saturated NH4Cl solution. After separation of the phases and extraction of the water phase with CH2Cl2, the combined organic layers were dried with magnesium sulfate. Solvent evaporation afforded a residue that was purified by flash chromatography to yield compound 4(4.1 g, 15 mmol, 90%) as a white solid; mp 65–66 °C; Rf 0.11 (silica gel, pentane–ether: 80 : 20); [α]24D=–8.9 (c= 1.0, CH2Cl2); v(CH2Cl2)/cm–1 3623, 3369, 2870, 1641, 1599, 1345, 1092, and 1047; δH(CDCl3, 400 MHz) 1.14–1.24 (1H, m), 1.38–1.45 (2H, m), 1.62–1.79 (1H, m), 1.80–1.90 (1H, m), 1.99–2.10 (1H, m), 2.34–2.42 (1H, m), 2.41 (3H, s), 3.57–3.63 (1H, m), 4.83–4.94 (2H, m), 5.65–5.75 (1H, m), 7.28 (2H, app. d, J 8.0), and 7.76 (2H, app. d, J 8.0); δC(CDCl3, 100 MHz) 21.5, 29.9, 32.6, 40.2, 41.8, 54.5, 113.1, 127.1, 129.6, 137.8, 141.9, and 143.2; m/z(EI)(rel. intensity) 264 (M+, < 1%), 236 (25), 210 (13), 172 (14), 155 (62), 133 (44), 132 (36), 110 (41), 106 (17), 97 (12), 96 (43), 94 (13), 93 (25), 92 (35), 91 (100), 80 (21), 79 (17), and 65 (20)(Anal. Calcd. for C14H19NO2S: C, 63.37; H, 7.22; N, 5.28. Found: C, 63.10; H, 7.07; N, 5.20%). The relative stereochemistry of this compound was determined by means of NOESY experiments.
Click here to see how this site uses Cookies. View our privacy policy here.