Kinetic and mechanistic examination of NBu4[IrH2(CO)2I2] and NBu4[RhH2(CO)2I2] via para-hydrogen enhanced NMR spectroscopy

(Note: The full text of this document is currently only available in the PDF Version )

Sarah K. Hasnip, Simon B. Duckett, Diana R. Taylor, Graham K. Barlow and Mike J. Taylor


Abstract

para-Hydrogen enhanced NMR signals are used to show that NBu4[M(CO)2I2] (M = Rh, Ir) add hydrogen to form NBu4- {all-cis-[M(H)2(CO)2I2]} which for M = Ir undergoes H2 elimination in a step where ΔH‡ 106 ± 10 kJ mol–1 and ΔS‡± 6 J K–1 mol–1 while showing a rich substitution chemistry with PPh3 that leads to both charged and neutral products via square pyramidal Ir(H)2(CO)2I.


References

  1. C. R. Bowers and D. P. Weitekamp, J. Am. Chem. Soc., 1987, 109, 5541 CrossRef CAS.
  2. R. Eisenberg, Acc. Chem. Res., 1991, 24, 110 CrossRef CAS.
  3. J. N. Atterer and J. Bargon, Prog. Nucl. Magn. Reson. Spectrosc., 1997, 31, 293 CrossRef.
  4. C. J. Sleigh and S. B. Duckett, Prog. Nucl. Magn. Reson. Spectrosc., 1999, 34, 71 CrossRef.
  5. S. B. Duckett, C. L. Newell and R. Eisenberg, J. Am. Chem. Soc., 1994, 116, 10548 CrossRef CAS; S. B. Duckett and R. Eisenberg, J. Am. Chem. Soc., 1993, 115, 5292 CrossRef CAS; S. B. Duckett, R. J. Mawby and M. G. Partridge, Chem. Commun., 1996, 383 RSC; P. D. Morran, S. A. Colebrooke, S. B. Duckett, J. A. B. Lohmann and R. Eisenberg, J. Chem. Soc., Dalton. Trans., 1998, 3363 RSC.
  6. P. M. Maitlis, A. Haynes, G. J. Sunley and M. J. Howard, J. Chem. Soc., Dalton Trans., 1996, 2187 RSC.
  7. When 13CO labelled 1 is used both these resonances are split into a triplet. The hydride resonance attributable to 3c is observed when HI is added to 1..
Click here to see how this site uses Cookies. View our privacy policy here.