The ansa-effect in permethyltantalocene chemistry: a [Me2Si] ansa bridge promotes olefin-insertion and reductive-elimination reactions for [Me2Si(C5Me4)2]Ta(η2-C2H4)H and [Me2Si(C5Me4)2]TaH3

(Note: The full text of this document is currently only available in the PDF Version )

Jun Ho Shin and Gerard Parkin


Abstract

The ansa-effect, as it applies to tantalocene chemistry, has been investigated by a comparison of the chemistry of [Me2Si(C5Me4)2]TaH3 and [Me2Si(C5Me4)2]Ta(η2-C2H4)H with their permethyltantalocene counterparts; these studies demonstrate that incorporation of the [Me2Si] ansa bridge substantially enhances the rates of both reductive elimination of H2 and ethylene-insertion into a Ta–H bond.


References

  1. H. H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger and R. M. Waymouth, Angew. Chem., Int. Ed. Engl., 1995, 34, 1143 CrossRef CAS.
  2. For leading reports describing differences in the chemistry of ansa and non-ansa systems, see: (a) S. L. J. Conway, T. Dijkstra, L. H. Doerrer, J. C. Green, M. L. H. Green and A. H. H. Stephens, J. Chem. Soc., Dalton Trans., 1998, 2689 RSC; (b) H. Lee, P. J. Desrosiers, I. Guzei, A. L. Rheingold and G. Parkin, J. Am. Chem. Soc., 1998, 120, 3255 CrossRef CAS; (c) J. C. Green, Chem. Soc. Rev., 1998, 27, 263 RSC.
  3. See, for example: (a) G. Parkin, E. Bunel, B. J. Burger, M. S. Trimmer, A. van Asselt and J. E. Bercaw, J. Mol. Catal., 1987, 41, 21 CrossRef CAS; (b) B. J. Burger, B. D. Santarsiero, M. S. Trimmer and J. E. Bercaw, J. Am. Chem. Soc., 1988, 110, 3134 CrossRef CAS; (c) V. C. Gibson, G. Parkin and J. E. Bercaw, Organometallics, 1991, 10, 220 CrossRef CAS.
  4. CSD Version 5.16. 3D Search and Research Using the Cambridge Structural Database; F. H. Allen and O. Kennard, Chem. Des. Automat. News, 1993, 8(1), 1, 31–37 Search PubMed.
  5. N. J. Bailey, J. A. Cooper, H. Gailus, M. L. H. Green, J. T. James and M. A. Leech, J. Chem. Soc., Dalton Trans., 1997, 3579 RSC.
  6. W. A. Herrmann, W. Baratta and E. Herdtweck, J. Organomet. Chem., 1997, 541, 445 CrossRef CAS.
  7. Ansa-niobocene and tantalocene complexes with asymmetric η51-coordination,a,be.g.[Me2C(C5H4)2]Ta[N(C6H3Pri2)]NMe2, and η52-coordination, {(Me2Si)25-C5H2But)(η2-C5HPri2)}TaMe3,c are also known: (a) A. N. Chernega, M. L. H. Green and A. G. Suárez, Can. J. Chem., 1995, 73, 1157 CAS; (b) W. A. Herrmann, W. Baratta and E. Herdtweck, Angew. Chem., Int. Ed. Engl., 1996, 35, 1951 CrossRef CAS; (c) P. Chirik and J. E. Bercaw, personal communication.
  8. V. C. Gibson, J. E. Bercaw, W. J. Bruton, Jr. and R. D. Sanner, Organometallics, 1986, 5, 976 CrossRef CAS.
  9. [Me2Si(C5Me4)2](SnBun3)2 is generated via reaction of [Me2Si(C5-Me4)2]Li2 with Bun3SnCl.
  10. Rate constants for reaction with C2H4 at 90 °C: [Me2Si(C5Me4)2]TaH3[9.8(9)× 10–4 s–1], Cp*2TaH3[2.5(2)× 10–7 s–1]. Rate constants for reaction with CO at 90 °C: [Me2Si(C5Me4)2]TaH3[6.1(6)× 10–4 s–1], Cp*2TaH3[2.2(2)× 10–7 s–1].
  11. L. Labella, A. Chernega and M. L. H. Green, J. Chem. Soc., Dalton Trans., 1995, 395 RSC; J. C. Green and C. N. Jardine, J. Chem. Soc., Dalton Trans., 1998, 1057 RSC see also ref. 2(a).
  12. J. W. Lauher and R. Hoffmann, J. Am. Chem. Soc., 1976, 98, 1729 CrossRef CAS.
  13. V. Varga, J. Hiller, R. Gyepes, M. Polasek, P. Sedmera, U. Thewalt and K. Mach, J. Organomet. Chem., 1997, 538, 63 CrossRef CAS; C. S. Bajgur, W. R. Tikkanen and J. L. Petersen, Inorg. Chem., 1985, 24, 2539 CrossRef CAS.
  14. As has been noted previously, exchange processes of this type do not require the participation of a 16-electron alkyl complexes, but may occur via an 18-electron agostic alkyl species.
  15. For ethylene insertion, ΔH= 15.49(33) kcal mol–1 and ΔS=–2.60(10) cal mol–1 K–1 corresponding to κins= 1.83 × 103 s–1 and ΔG= 16.44 kcal mol–1 at 100 °C. For inversion, ΔH= 17.96(24) kcal mol–1 and ΔS= 3.3(8) cal mol–1 K–1.
  16. Data for Cp*2Ta(η2-C2H4)H at 100 °C: κins= 2.4 s–1; ΔG= 21.3 kcal mol–1. See ref. 3(b).
  17. The term ‘inversion’ in this sense is being used to refer to ethylene–hydride site (or alkyl–vacancy) interchange. Since the molecule is not chiral, it is not intended to refer to enantiomer interconversion.
  18. See for example: C. P. Casey, M. A. Fagan and S. L. Hallenbeck, Organometallics, 1998, 17, 287 Search PubMed and references therein.
  19. See supplementary data for the structures of [Me2Si(C5Me4)2]Ta(CO)H, [Me2Si(C5Me4)2]Ta(η2-C2H4)H, and Cp*2TaH3. The C2H4 and hydride ligands of [Me2Si(C5Me4)2]Ta(η2-C2H4)H are statistically disordered about a crystallographic mirror plane that lies in the Cpcent–Ta–Cpcent plane. CCDC 182/1209. See http://www.rsc.org/suppdata/cc/1999/887/ for crystallographic files in .cif format.
  20. Cpcent–Ta–Cpcent= 148.3°; Cpnorm/Cpnorm= 148.2°.
  21. Individual Ta–CCp bond lengths for [Me2Si(C5Me4)2]Ta(CO)H range from 2.32 Å to 2.45 Å. The difference between the Cpcent–Ta–Cpcent angle and the angle between the ring normals is 8.2° for [Me2Si(C5-Me4)2]Ta(CO)H, but only 0.1° for Cp*2TaH3.
Click here to see how this site uses Cookies. View our privacy policy here.