MOVPE Mechanisms from studies of specially designed and labelled precursors

(Note: The full text of this document is currently only available in the PDF Version )

David J. Cole-Hamilton


Abstract

Studies of the reaction or decomposition products of precursors for metal organic vapour phase epitaxy (MOVPE) do not always give enough information to allow the unequivocal determination of decomposition or growth mechanisms. By studying deuterium labelled precursors in the presence or absence of their protio analogues, other precursors and/or He, H2, D2 or by studying precursors carrying substituents that are designed to give different products if different mechanisms operate, it is possible to draw more definitive conclusions.

Using these studies coupled with semi-empirical molecular orbital calculations, it is shown that primary arsines decompose by reductive elimination of H2 followed by β-abstraction (ButAsH2) or reaction with the parent arsine to form RAsH·, which undergoes reductive elimination (PhAsH·), β-abstraction (ButAsH·) or As–C bond cleavage (ButAsH·). Hex-5-enylarsine has been used to show that adduct formation is not important during growth of GaAs.

For group 16 dialkyls (R2E, E = S, Se or Te), the predominant decomposition mechanism is homolytic E–C bond cleavage. Subsequent reactions involve abstraction of H from the β-position of the intact R2E to give alkane, two molecules of alkene E and H· (E = Te or Se). For E = Te, H· does not react significantly with Pri2Te, but for But2Se a short chain-reaction is initiated by H·. The importance of free radicals is confirmed by studies of (but-2-enyl)2Te, (hex-5-enyl)2E (E = S, Se, Te), (pent-5-enyl)2Te and (hex-5-enyl)SH, as well as of secondary and tertiary analogues. Reactions of the labelled and designed group 16 precursors with Me2M (M = Cd or Zn) are also discussed.


References

  1. P. Zanella, G. Rossetto, F. Ossola, M. Porchia and J. O. Williams, Chem. Mater., 1991, 3, 225 CrossRef CAS.
  2. Metal Organic Vapour Phase Epitaxy 1996, ed. J. B. Mullin, J. Cryst. Growth, 1997, 104, and references therein Search PubMed.
  3. H. M. Manasevit, Appl. Phys. Lett., 1968, 12, 156 CrossRef CAS.
  4. H. M. Manasevit and W. I. Simpson, J. Electrochem. Soc., 1971, 118, 644 CAS.
  5. R. M. Lum and J. K. Klingert, J. Cryst. Growth, 1991, 107, 290 CrossRef CAS.
  6. D. J. Cole-Hamilton, Chem. Br., 1990, 26, 852 Search PubMed.
  7. M. E. Pemble, in Mechanisms of Reactions of Organometallic Compounds with Surfaces, ed. D. J. Cole-Hamilton and J. O. Williams, Plenum, New York, 1989, p. 145 Search PubMed.
  8. J. S. Foord, C. L. French, C. L. Levoguer, G. J. Davies and P. J. Skevington, Semiconduct. Sci. Technol., 1993, 8, 959 Search PubMed.
  9. J. E. Hails, Adv. Mater. Opt. Electron., 1994, 3, 151 CAS.
  10. G. H. Fan, N. Maung, T. L. Ng, P. F. Heelis, J. O. Williams, A. C. Wright, D. F. Foster and D. J. Cole-Hamilton, J. Cryst. Growth, 1997, 170, 485 CrossRef CAS.
  11. S. H. Li, C. A. Larsen, N. I. Buchan, G. B. Stringfellow, W. P. Kosar and D. W. Brown, J. Appl. Phys., 1989, 65, 5161 CrossRef CAS and references therein.
  12. R. H. Marking, W. L. Gladfelter and K. F. Jensen, Chem. Mater., 1990, 2, 499 CrossRef CAS.
  13. D. F. Foster, C. Glidewell and D. J. Cole-Hamilton, Appl. Phys. Lett., 1993, 63, 57 CrossRef CAS.
  14. D. F. Foster, C. Glidewell and D. J. Cole-Hamilton, J. Electron. Mater., 1994, 23, 69 Search PubMed.
  15. D. F. Foster, C. Glidewell, G. R. Woolley and D. J. Cole-Hamilton, J. Electron. Mater., 1995, 24, 1731 Search PubMed.
  16. D. F. Foster, C. Glidewell and D. J. Cole-Hamilton, Appl. Phys. Lett., 1993, 63, 214 CrossRef CAS.
  17. D. F. Foster, C. Glidewell, D. J. Cole-Hamilton, I. M. Povey, R. D. Hoare and M. E. Pemble, J. Cryst. Growth, 1995, 145, 104 CrossRef.
  18. R. D. Hoare, M. E. Pemble, I. M. Povey, J. O. Williams, D. F. Foster, C. Glidewell and D. J. Cole-Hamilton, J. Cryst. Growth, 1994, 137, 347 CrossRef CAS.
  19. D. Griller and K. U. Ingold, Acc. Chem. Res., 1980, 13, 137.
  20. A. S. Gordon and S. R. Smith, J. Phys. Chem., 1962, 66, 521 CAS.
  21. J. E. Hails, I. Girling and D. R. Stern, Mater. Res. Soc. Symp. Proc., 1991, 204, 155 CAS.
  22. J. Stevenson, W. Bell, J. Ferry, D. J. Cole-Hamilton and J. E. Hails, J. Organomet. Chem., 1993, 449, 141 CrossRef CAS.
  23. H. Lemkuhl, I. Döring and H. Nehr, J. Organomet. Chem., 1981, 221, 7 CrossRef.
  24. W. Bell, E. A. D. McQueen, J. C. Walton, D. F. Foster and D. J. Cole-Hamilton, J. Cryst. Growth, 1992, 117, 58 CrossRef CAS.
  25. D. F. Foster, W. Bell, J. Stevenson, D. J. Cole-Hamilton and J. E. Hails, J. Cryst. Growth, 1994, 145, 520 CrossRef CAS.
  26. W. Bell, J. Stevenson, D. J. Cole-Hamilton and J. E. Hails, Polyhedron, 1994, 13, 1253 CrossRef CAS.
  27. J. A. Kerr and A. F. Trotman-Dickenson, Trans. Faraday Soc., 1969, 55, 921 Search PubMed.
  28. W. Bell, D. J. Cole-Hamilton, P. N. Culshaw, A. E. D. McQueen, D. V. Shenai-Khatkhate, J. C. Walton and J. E. Hails, J. Organomet. Chem., 1992, 430, 43 CrossRef CAS.
  29. A. E. D. McQueen, P. N. Culshaw, J. C. Walton, D. V. Shenai-Khatkhate, D. J. Cole-Hamilton and J. B. Mullin, J. Cryst. Growth, 1991, 107, 325 CrossRef CAS.
  30. D. F. Foster, N. L. Pickett and D. J. Cole-Hamilton, Silicon, Phosphorus Sulfur, 1998 Search PubMed.
  31. N. L. Pickett, D. F. Foster and D. J. Cole-Hamilton, Proc. Electrochem. Soc. Conf., 1998, in press Search PubMed.
  32. N. L. Pickett, D. F. Foster, D. Ellis, N. Maung, J. E. Hails and D. J. Cole-Hamilton, J. Mater. Chem., to be submitted Search PubMed.
  33. P. J. Wright, B. Cockayne, P. J. Parbrook, P. E. Oliver and A. C. Jones, J. Cryst. Growth, 1991, 108, 525 CrossRef CAS and references therein.
  34. A. Kamata, M. Mitsuhashi and H. Fujita, Appl. Phys. Lett., 1993, 63, 3353 CrossRef CAS.
  35. N. L. Pickett, D. F. Foster and D. J. Cole-Hamilton, J. Mater. Chem., 1996, 6, 507 RSC.
  36. N. L. Pickett, D. F. Foster and D. J. Cole-Hamilton, J. Cryst. Growth, 1997, 170, 476 CrossRef CAS.
  37. N. L. Pickett, F. G. Riddell, D. F. Foster, D. J. Cole-Hamilton and J. R. Fryer, J. Mater. Chem., 1997, 7, 1855 RSC.
  38. X. Li, J. R. Fryer and D. J. Cole-Hamilton, J. Chem. Soc., Chem. Commun., 1994, 1715 RSC.
  39. S. W. Haggata, X. Li, D. J. Cole-Hamilton and J. R. Fryer, J. Mater. Chem., 1996, 6, 1771 RSC.
  40. S. W. Haggata, D. J. Cole-Hamilton and J. R. Fryer, J. Mater. Chem., 1997, 7, 1969 RSC.
  41. D. N. Armitage, H. M. Yates, J. O. Williams, D. J. Cole-Hamilton and I. L. J. Patterson, Adv. Mater. Opt. Electron., 1992, 1, 43 CAS.
  42. D. F. Foster, I. L. J. Patterson, L. D. James, D. J. Cole-Hamilton, D. N. Armitage, H. M. Yates, A. C. Wright and J. O. Williams, Adv. Mater. Opt. Electron., 1994, 3, 163 CAS.
  43. N. L. Pickett, S. Lawson, W. G. Thomas, F. G. Riddell, D. F. Foster, D. J. Cole-Hamilton and J. R. Fryer, J. Mater. Chem., 1998, 8, 2769 RSC.
  44. W. S. Kuhn, R. Helbing, B. Qu'Hen and O. Gorochov, J. Cryst. Growth, 1995, 146, 580 CrossRef CAS.
  45. R. N. Birrell and A. F. Trotman-Dickenson, J. Chem. Soc., 1960, 4218 RSC.
  46. C. G. Thompson, R. A. Meyer and J. S. Ball, J. Am. Chem. Soc., 1952, 74, 3284 CrossRef CAS.
  47. J. E. Hails, D. J. Cole-Hamilton and W. Bell, J. Cryst. Growth, 1994, 145, 596 CrossRef CAS.
  48. J. E. Hails, D. J. Cole-Hamilton and A. E. D. McQueen, J. Cryst. Growth, 1998, 183, 594 CrossRef CAS.
  49. D. F. Foster, J. E. Hails and D. J. Cole-Hamilton, unpublished observations.
  50. W. Bell, J. Stevenson, J. E. Hails, D. Ellis and D. J. Cole-Hamilton, unpublished observations.
Click here to see how this site uses Cookies. View our privacy policy here.