Organometallic chemistry on silicon surfaces: formation of functional monolayers bound through Si–C bonds

(Note: The full text of this document is currently only available in the PDF Version )

Jillian M. Buriak


Abstract

Silicon chips form the backbone of modern computing and yet until recently, the surface chemistry of this technologically essential material has remained relatively unexplored. As the size of devices on silicon wafers shrink (towards gigascale integration), the surface characteristics play increasingly crucial roles in the proper functioning of the device since the ratio of surface atoms/bulk escalates. While surface oxide has served thus far as the main passivation route, there is strong interest in precisely tailoring the interface properties, not only for microelectronics, but other applications including sensors, MEMS and biologically active surfaces. As a result, organometallic and organic chemistry has become essential for the synthesis of functional, modifiable monolayers, bound to non-oxidized silicon surfaces through silicon–carbon bonds. The latest approaches towards preparation of monolayers through Si–C bonds on both flat and photoluminescent porous silicon are described. Wet chemical techniques, accessible to most organometallic/organic chemists are highlighted, but recent developments using UHV conditions also receive attention.


References

  1. H. N. Waltenburg and J. T. Yates, Chem. Rev., 1995, 95, 1589 CrossRef CAS.
  2. M. J. Sailor and E. J. Lee, Adv. Mater., 1997, 9, 783 CrossRef CAS.
  3. A. Ulman, Introduction to Thin Organic Films: From Langmuir Blodgett to Self-Assembly, Academic Press, Boston, MA, 1991 Search PubMed.
  4. L. T. Canham, Appl. Phys. Lett., 1990, 57, 1046 CrossRef CAS.
  5. A. G. Cullis, L. T. Canham and P. D. J. Calcott, J. Appl. Phys., 1997, 82, 909 CrossRef CAS.
  6. B. Hamilton, Semicond. Sci. Technol., 1995, 10, 1187 CrossRef CAS.
  7. A. Halimaoui, in Properties of Porous Silicon, ed. L. T. Canham, INSPEC, London, 1997, p. 12 Search PubMed.
  8. M. T. Kelly, J. K. M. Chun and A. B. Bocarsly, Appl. Phys. Lett., 1994, 64, 1693 CrossRef CAS.
  9. N. Noguchi and I. Suemune, Appl. Phys. Lett., 1994, 62, 1429 CrossRef CAS; O. K. Anderson, T. Frello and E. Veje, J. Appl. Phys., 1995, 78, 6189 CrossRef CAS.
  10. SciFinder (CAS/STN database) found on 22/03/99 3980 papers using the term ‘porous silicon’, excluding ‘oxide’ and ‘silica’.
  11. L. T. Canham, in Properties of Porous Silicon, ed. L. T. Canham, INSPEC, London, 1997, p. 249 Search PubMed.
  12. J. M. Lauerhaas and M. J. Sailor, Science, 1993, 261, 1567.
  13. M. J. Sailor, J. L. Heinrich and J. M. Lauerhaas, Semiconductor Nanoclusters, P. V. Kamat and D. Meisel, Elsevier, Amsterdam, 1996, vol. 103, p. 209 Search PubMed.
  14. B. J. Tufts, A. Kumar, A. Bansal and N. S. Lewis, J. Phys. Chem., 1992, 96, 4581 CrossRef CAS.
  15. G. S. Higashi, Y. J. Chabal, G. W. Trucks and K. Raghavachari, Appl. Phys. Lett., 1990, 56, 656 CrossRef CAS; G. S. Higashi, R. S. Becker, Y. J. Chabal and A. J. Becker, Appl. Phys. Lett., 1991, 58, 1656 CrossRef CAS.
  16. R. C. Anderson, R. S. Muller and C. W. Tobias, J. Electrochem. Soc., 1993, 140, 1393 CAS; A. Grosman and C. Ortega, in Properties of Porous Silicon, ed. L. T. Canham, INSPEC, London, 1997, p. 145 Search PubMed.
  17. The Chemistry of Organic Silicon Compounds, ed. S. Patai and Z. Rappoport, John Wiley and Sons, New York, 1989 Search PubMed.
  18. (a) For example of reactions that are successful on both hydride terminated flat and porous silicon: thermally induced hydrosilylation, refs. 19, 23 and 25; (b) photoelectrochemical esterification; ref. 46; (c) reaction of alkyl and aryl carbanions, P. E. Laibinis and N. Y. Kim, Fall Meeting of the Materials Research Society, Boston, MA, 1998, abstract F3.5 Search PubMed; (d) alkoxylation with ROH (where R = H, alkyl), ref. 1 and N. Y. Kim and P. E. Laibinis, J. Am. Chem. Soc., 1997, 119, 2297 Search PubMed.
  19. (a) M. R. Linford and C. E. D. Chidsey, J. Am. Chem. Soc., 1993, 115, 12631 CrossRef CAS; (b) M. R. Linford, P. Fenter, P. M. Eisenberger and C. E. D. Chidsey, J. Am. Chem. Soc., 1995, 117, 3145 CrossRef CAS.
  20. C. Chatgilialoglu, Acc. Chem. Res., 1992, 25, 188 CrossRef CAS.
  21. In footnote 33 of ref. 19(b), the authors note that surface hydrosilylation of hexadecyne produces a small peak at 1600.8 cm–1 which they state suggests a surface bound vinyl group. Indeed, Lewis acid and white light mediated hydrosilylation of dodecyne on porous silicon yields a strong ν(C[double bond, length as m-dash]C) vibration at 1595 cm–1 which corroborates their assumption: see refs. 31, 36 and 38.
  22. J. A. Labinger, in Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon, New York, 1991, vol. 8, p. 699 Search PubMed.
  23. A. B. Sieval, A. L. Demirel, J. W. M. Nissink, M. R. Linford, J. H. van der Maas, W. H. de Jeu, H. Zuilhof and E. J. R. Sudhölter, Langmuir, 1998, 14, 1759 CrossRef CAS.
  24. M. M. Sung, J. Kluth, O. W. Yauw and R. Maboudian, Langmuir, 1997, 13, 6164 CrossRef CAS.
  25. J. E. Bateman, R. D. Eagling, D. R. Worrall, B. R. Horrocks and A. Houlton, Angew. Chem., Int. Ed., 1998, 37, 2683 CrossRef CAS.
  26. I. Fleming, in Comprehensive Organic Chemistry, ed. N. Jones, Pergamon, New York, 1979, vol. 3, p. 568 Search PubMed.
  27. J. Terry, M. R. Linford, C. Wigren, R. Cao, P. Pianetta and C. E. D. Chidsey, Appl. Phys. Lett., 1997, 71, 1056 CrossRef CAS; J. Terry, R. Mo, C. Wigren, R. Cao, G. Mount, P. Pianetta, M. R. Linford and C. E. D. Chidsey, Nucl. Instrum. Methods. Phys. Res., Sect. B, 1997, 133, 94 CrossRef CAS.
  28. P. Wagner, S. Nock, J. Spudich, W. D. Volkmuth, S. Chu, R. L. Cicero, C. P. Wade, M. R. Linford and C. E. D. Chidsey, J. Struct. Biol., 1997, 119, 189 CrossRef CAS.
  29. E. Leroy, O. M. Küttel, L. Schlapbach, L. Giraud and T. Jenny, Appl. Phys. Lett., 1998, 73, 1050 CrossRef CAS.
  30. F. Effenberger, G. Götz, B. Bidlingmaier and M. Wezstein, Angew. Chem., Int. Ed., 1998, 37, 2462 CrossRef CAS.
  31. M. P. Stewart and J. M. Buriak, Angew. Chem., Int. Ed., 1998, 23, 3257 CrossRef; Recent work in our group indicates that the reaction proceeds much more efficiently with photoluminescent samples, regardless of initial doping: M. P. Stewart and J. M. Buriak, unpublished results.
  32. J. L. Heinrich, A. Lee and M. J. Sailor, Mater. Res. Soc. Symp. Proc., 1995, 358, 605 CAS.
  33. J. March, Advanced Organic Chemistry, Wiley-Interscience, New York, 4th edn., 1992, p. 748 Search PubMed.
  34. L. N. Lewis, J. Am. Chem. Soc., 1990, 112, 5998 CrossRef CAS.
  35. L. A. Zazzera, J. F. Evans, M. Deruelle, M. Tirrell, C. R. Kessel and P. McKeown, J. Electrochem. Soc., 1997, 144, 2184 CAS.
  36. J. M. Holland, M. P. Stewart, M. J. Allen and J. M. Buriak, J. Solid State Chem., in press Search PubMed.
  37. Hydrosilylation with Wilkinson's catalyst: B. Marciniec and J. Gulinski, J. Organomet. Chem., 1993, 446, 15 Search PubMed Bis-silylation with palladium complexes: Y. Ito, M. Suginome and M. Murakami, J. Org. Chem., 1991, 56, 1948 CrossRef CAS.
  38. J. M. Buriak and M. J. Allen, J. Am. Chem. Soc., 1998, 120, 1339 CrossRef CAS.
  39. (a) N. Asao, T. Sudo and Y. Yamamoto, J. Org. Chem., 1996, 61, 7654 CrossRef CAS; (b) K. Oertle and H. Wetter, Tetrahedron Lett., 1985, 26, 5511 CrossRef CAS; (c) K. Yamamoto and M. Takemae, Synlett, 1990, 259 CrossRef CAS.
  40. Asao et al. showed that EtAlCl2 and AlCl3 work equally well as catalysts for hydrosilylation of alkynes (see ref. 39a).
  41. J. M. Buriak and M. J. Allen, J. Lumin., 1998, 80, 29 CrossRef CAS.
  42. A. Pelter, K. Smith and H. C. Brown, Borane Reagents, Academic Press, San Diego, 1988, pp. 166–167 Search PubMed.
  43. L. J. Bellamy, The Infra-Red Spectra of Complex Molecules, Methuen and Company Ltd, New York, 1960, p. 348 Search PubMed.
  44. C. Viellard, M. Warntjes, F. Oxanam and J.-N. Chazalviel, Proc. Electrochem. Soc., 1996, 95, 250 Search PubMed.
  45. There are scattered examples of electrochemical hydrosilylation of alkenes with soluble, molecular silanes. See, for example: O. Y. Okhlobystin and N. T. Berberova, Dokl. Akad. Nauk. SSSR, 1993, 332, 599 Search PubMed.
  46. Sailor and coworkers have previously demonstrated a photoelectrochemical reaction on n-type derived porous silicon which results in silyl ester formation on the surface. There is no molecular equivalent because hole migration to the surface silicon atoms drives the process: E. J. Lee, T. W. Bitner, J. S. Ha, M. J. Shane and M. J. Sailor, J. Am. Chem. Soc., 1996, 118, 5375 Search PubMed.
  47. J. H. Song and M. J. Sailor, J. Am. Chem. Soc., 1998, 120, 2376 CrossRef CAS.
  48. N. Y. Kim and P. E. Laibinis, J. Am. Chem. Soc., 1998, 120, 4516 CrossRef CAS.
  49. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, John Wiley and Sons, New York, 5th edn., 1988, p. 266 Search PubMed.
  50. A. Bansal, X. Li, I. Lauermann, N. S. Lewis, S. I. Yi and W. H. Weinberg, J. Am. Chem. Soc., 1996, 118, 7225 CrossRef CAS.
  51. C. Henry de Villeneuve, J. Pinson, M. C. Bernard and P. Allongue, J. Phys. Chem. B, 1997, 101, 2415 CrossRef.
  52. M. J. Bozack, W. J. Choyke, L. Muehlhoff and J. T. Yates, Surf. Sci., 1986, 176, 547 CrossRef CAS; M. J. Bozack, P. A. Taylor, W. J. Choyke and J. T. Yates, Surf. Sci. Lett., 1986, 177, L933 Search PubMed; M. J. Bozack, W. J. Choyke, L. Muelhoff and J. T. Yates, J. Appl. Phys., 1986, 60, 3750 CrossRef CAS; J. Yoshinobu, H. Tsuda, M. Onchi and M. Nishijima, J. Chem. Phys., 1987, 87, 7332 CrossRef CAS; S. Gokhale, P. Trischberger, D. Menzel, W. Widdra, H. Dröge, H.-P. Steinrück, U. Birkenbeuer, U. Gutdeutsch and N. Rösch, J. Chem. Phys., 1998, 108, 5554 CrossRef CAS; B. Borovsky, M. Krueger and E. Ganz, Phys. Rev. B, 1998, 57, R4269 CrossRef CAS.
  53. J. Hovis, S. Lee, H. Liu and R. J. Hamers, J. Vac. Sci. Technol. B, 1997, 15, 1153 CrossRef CAS.
  54. P. A. Taylor, R. M. Wallace, C. C. Cheng, W. H. Weinberg, M. J. Dresser, W. J. Choyke and J. T. Yates, J. Am. Chem. Soc., 1992, 114, 6754 CrossRef CAS.
  55. H. Liu and R. J. Hamers, J. Am. Chem. Soc., 1997, 119, 7593 CrossRef CAS.
  56. J. T. Yates, Science, 1998, 279, 335 CrossRef.
  57. R. J. Hamers, J. S. Hovis, S. Lee, H. Liu and J. Shan, J. Phys. Chem. B, 1997, 101, 1489 CrossRef CAS.
  58. H. B. Liu and R. J. Hamers, Surf. Sci., 1998, 416, 354 CrossRef CAS.
  59. J. S. Hovis and R. J. Hamers, J. Phys. Chem. B, 1997, 101, 9581 CrossRef CAS.
  60. (a) J. S. Hovis and R. J. Hamers, J. Phys. Chem. B, 1998, 102, 687 CrossRef CAS; (b) D. F. Padowitz and R. J. Hamers, J. Phys. Chem. B, 1998, 102, 8541 CrossRef CAS.
  61. R. Konecny and D. Doren, J. Am. Chem. Soc., 1997, 119, 11098 CrossRef CAS.
  62. A. V. Teplyakov, M. J. Kong and S. F. Bent, J. Am. Chem. Soc., 1997, 119, 11100 CrossRef CAS.
  63. A. V. Teplyakov, M. J. Kong and S. F. Bent, J. Chem. Phys., 1998, 108, 4599 CrossRef CAS.
  64. J. S. Hovis, H. B. Liu and R. J. Hamers, J. Phys. Chem. B, 1998, 102, 6873 CrossRef CAS.
  65. M. S. Ravenscroft, K. E. Bateman, K. M. Shaffer, H. M. Schessler, D. R. Jung, T. W. Schneider, C. B. Montgomery, T. L. Custer, A. E. Schaffner, Q. Y. Liu, Y. X. Li, J. L. Barker and J. J. Hickman, J. Am. Chem. Soc., 1998, 120, 12 169 CrossRef CAS and references therein..
  66. M. J. Sailor, in Properties of Porous Silicon, ed. L. T. Canham, INSPEC, London, 1997, p. 364 Search PubMed.
  67. V. P. Bondarenko and V. A. Yakovtseva, in Properties of Porous Silicon, ed. L. T. Canham, INSPEC, London, 1997, p. 343 Search PubMed.
  68. M. Thönissen, M. Krüger, G. Lerondel and R. Romestain, Properties of Porous Silicon, ed. L. T. Canham, INSPEC, London, 1997, p. 349; M. Van Belle, Photonics Spectra, 1998, 32, (10), 57 Search PubMed.
  69. V. V. Doan and M. J. Sailor, Science, 1992, 256, 1791 CrossRef.
  70. L. T. Canham, Appl. Phys. Lett., 1993, 63, 337 CrossRef CAS.
  71. L. T. Canham, Adv. Mater., 1995, 7, 1033 CAS; L. T. Canham, in Properties of Porous Silicon, ed. L. T. Canham, INSPEC, London, 1997, p. 371 Search PubMed.
  72. X. Li, J. L. Coffer, Y. Chen, R. F. Pinizzotto, J. Newey and L. T. Canham, J. Am. Chem. Soc., 1998, 120, 11706 CrossRef CAS.
  73. J. M. Lauerhaas, G. M. Credo, J. L. Heinrich and M. J. Sailor, J. Am. Chem. Soc., 1992, 114, 1911 CrossRef CAS.
  74. J. Harper and M. J. Sailor, Anal. Chem., 1996, 68, 3713 CrossRef CAS.
  75. A. Janshoff, K. P. S. Dancil, C. Steinem, D. P. Greiner, V. S.-Y. Lin, C. Gurtner, K. Motesharei, M. J. Sailor and M. R. Ghadiri, J. Am. Chem. Soc., 1998, 120, 12 108 CrossRef CAS.
  76. Y. Xia and G. M. Whitesides, Angew. Chem. Int. Ed., 1998, 37, 551 CrossRef CAS.
  77. N. L. Jeon, J. Hu, G. M. Whitesides, M. K. Erhardt and R. G. Nuzzo, Adv. Mater., 1998, 10, 1466 CrossRef CAS.
  78. In Table 4 of ref. 76, Xia and Whitesides summarize the solid substrates and molecular precursors that form self-assembled monolayers (SAMs). The work of the groups of Chidsey (ref. 19) and Lewis (ref. 50) is mentioned.