A chemical synthesis of nicotinamide adenine dinucleotide (NAD+)

(Note: The full text of this document is currently only available in the PDF Version )

Jaemoon Lee, Hywyn Churchil, Woo-Baeg Choi, Joseph E. Lynch, F. E. Roberts, R. P. Volante and Paul J. Reider


Abstract

A practical synthesis of nicotinamide mononucleotide (β-NMN) and a high yield coupling with AMP-morpholidate that also provides NAD+ in an efficient manner are reported.


References

  1. The Merck Index, 6259, 11th edn., ed. S. Budavari, Merck, Rahway, NJ, 1989 Search PubMed.
  2. N. H. Hughes, G. W. Kenner and A. Todd, J. Chem. Soc., 1957, 3733 RSC; L. J. Haynes, N. H. Hughes, G. W. Kenner and A. Todd, J. Chem. Soc., 1957, 3727 RSC.
  3. While β-NMN is commercially available, its high price ($508 per gram, Sigma 1997 catalog) and a lack of supply made large scale preparation of NAD+ difficult. For other preparations of β-NMN, see D. R. Walt, V. M. Rios-Mercadillo, J. Auge and G. M. Whitesides, J. Am. Chem. Soc., 1980, 102, 7806 Search PubMed; D. R. Walt, M. A. Findeis, V. M. Rois-Mercadillo, J. Auge and G. M. Whitesides, J. Am. Chem. Soc., 1984, 106, 234 CrossRef; G. M. Whitesides and D. R. Walt, US Pat. 4,411,995-A, 1983 CrossRef CAS; R. Jeck, P. Heik and C. Woenckhaus, FEBS Lett., 1974, 42, 161 CrossRef CAS.
  4. I. A. Mikhailopulo, T. I. Pricota, V. A. Timoshchuk and A. A. Akhrem, Synthesis, 1981, 387.
  5. M. Yoshikawa, T. Kato and T. Takenishi, Tetrahedron Lett., 1967, 5065 CrossRef CAS; K. Imai, S. Fujii, K. Takanohashi, Y. Furukawa, T. Masuda and M. Honjo, J. Org. Chem., 1969, 34, 1547 CrossRef CAS.
  6. In considering an efficient method for the synthesis of the pyrophosphate, we attempted to prepare the intermediate dichlorophosphate (phosphorodichloridate). Dichloridate was then treated in situ with AMP monosodium salt and triazole. However, no pyrophosphate bond formation was observed by 31P NMR spectroscopy.
  7. In an attempt to eliminate the bis-adduct formation, the reaction was also carried out using a 1 : 1 mixture of POCl3–H2O [in situ generation of (HO)POCl2]; see M. Yoshikawa, T. Kato and T. Takenishi, Bull. Chem. Soc. Jpn., 1969, 3505 Search PubMed.
  8. Chromatography on Dowex resin (two successive columns, 1X2 formate, 50WX8 H+ form) followed by subsequent lyophilization of the aqueous fractions provided β-NMN in 80% yield, 97% purity (120 g scale). The two resin column isolation process proved to be operationally simple and the Dowex 50WX8 resin (H+ form) served the dual purpose of purification and, more importantly, pH adjustment to provide the desired inner salt form of β-NMN.
  9. The crude β-NMN was initially purified by a resin-free isolation [i.e. precipitation followed by treatment with activated carbon (Ecorsob-C, P-502-H)]. Although the process is simple, the yield for the next coupling reaction with AMP-morpholidate under the optimized condition was only moderate (it still required pH adjustment using H+ cation resin). Alternatively, a direct resin chromatography using Dowex (50W X 8-100) resin column was developed (97% purity, eluted with 5% formic acid in water). However, this procedure required high resin loads with the product eluting in a large volume of water.
  10. For examples of general pyrophosphate bond formation, see: A. F. Cook, M. J. Holman and A. L. Nussbaum, J. Am. Chem. Soc., 1969, 91, 1522 Search PubMed; K. Furusawa, M. Sekine and T. Hata, J. Chem. Soc., Perkin Trans. 1, 1976, 1711 CrossRef CAS; F. Cramer and H. Schaller, Chem. Ber., 1961, 94, 1634 RSC; V. J. Davisson, A. B. Woodside, T. R. Neal, K. E. Stremler, M. Muehlbacher and C. D. Poulter, J. Org. Chem., 1986, 51, 4768 CAS; J. R. Falck, K. K. Reddy, J. Ye, M. Saady, C. Mioskowski, S. B. Shears, Z. Tan and S. Safrany, J. Am. Chem. Soc., 1995, 117, 12172 CrossRef CAS; V. Wittmann and C.-H. Wong, J. Org. Chem., 1997, 62, 2144 CrossRef CAS.
  11. V. C. Bailey, J. K. Sethi, A. Galione and B. V. L. Potter, Chem. Commun., 1997, 695 RSC.
  12. A. M. Michelson, Biochim. Biophys. Acta, 1968, 91, 1; H. Kim and B. E. Haley, J. Biol. Chem., 1990, 265, 3636 CAS.
  13. (a) J. G. Moffat and H. G. Khorana, J. Am. Chem. Soc., 1959, 81, 1265 CrossRef; (b) J. G. Moffat and H. G. Khorana, J. Am. Chem. Soc., 1961, 83, 649 CrossRef CAS; (c) E. S. Simon, S. Grabowski and G. M. Whitesides, J. Org. Chem., 1990, 55, 1834 CrossRef CAS.
  14. L. M. Mel'nikova and V. M. Berezovkii, Zh. Obshch. Khim., 1970, 40, 918 CAS.
  15. R. Lohrmann and L. E. Orgel, Tetrahedron, 1978, 34, 853 CrossRef CAS.
  16. B. C. F. Chu and L. E. Orgel, Biochim. Biophys. Acta, 1984, 782, 103 CrossRef CAS; M. Shimazu, K. Shinozuka and H. Sawai, Tetrahedron Lett., 1990, 31, 235 CrossRef CAS.
  17. For a successful high yielding coupling reaction, reagents and the solvents were dried. A MnCl2 solution was prepared by dissolution of the commercial tetrahydrate in formamide to give a 0.2 M stock solution. The solution was dried over 4 Å molecular sieves for several days prior to use. Typically the solution had 0.5 M H2O content and was used for the reaction successfully. Use of commercial anhydrous MnCl2 proved inferior.
  18. Purification of NAD+ using resin chromatography at room temperature resulted in partial decomposition of purified NAD+(5% purity loss). Therefore, the chromatography was carried out at 5 °C (110 g scale, > 99% purity).