Diels–Alder reactions of dienylboron compounds with unactivated dienophiles: an application of boron tethering for substituted cyclohexenol synthesis

(Note: The full text of this document is currently only available in the PDF Version )

Robert A. Batey, Avinash N. Thadani and Alan J. Lough


Abstract

An efficient tethered intramolecular Diels–Alder reaction of 1,3-dienylboronates with various allyl and homoallyl alcohols under thermal conditions is described.


References

  1. For a review on intermolecular Diels–Alder reactions, see: W. Oppolzer, in Comprehensive Organic Synthesis, ed. B. M. Trost, I. Fleming and L. A. Paquette, Pergamon, Oxford, 1991, vol. 5, pp. 315–399 Search PubMed.
  2. For reviews on intramolecular Diels–Alder reactions, see: W. R. Roush, in Comprehensive Organic Synthesis, ed. B. M. Trost, I. Fleming and L. A. Paquette, Pergamon, Oxford, 1991, vol. 5, pp. 513–550 Search PubMed; D. Craig, Chem. Soc. Rev., 1987, 16, 187 Search PubMed; A. G. Fallis, Can. J. Chem., 1984, 62, 183 RSC.
  3. For the first example of the use of an organoboron compound in an intermolecular Diels–Alder reaction, see: D. S. Matteson and J. O. Waldbillig, J. Org. Chem., 1963, 28, 366 Search PubMed.
  4. For examples of the use of alkenylboron compounds as dienophiles in intermolecular Diels–Alder reactions, see: D. A. Singleton, in Advances in Cycloaddition, ed. M. Lautens, JAI Press, Greenwich, CT, 1997, vol. 4, pp. 121–148 Search PubMed.
  5. For examples of the use of alkenylboron compounds as dienophiles in intramolecular Diels–Alder reactions, see: D. A. Singleton and Y.-K. Lee, Tetrahedron Lett., 1995, 36, 3473 Search PubMed; R. A. Batey, D. Lin, A. Wong and C. L. S. Hayhoe, Tetrahedron Lett., 1997, 38, 3699 CrossRef CAS.
  6. (a) M. Vaultier, F. Truchet, B. Carboni, R. W. Hoffmann and I. Denne, Tetrahedron Lett., 1987, 28, 4169 CrossRef CAS; (b) X. Wang, J. Chem. Soc., Chem. Comm., 1991, 1515 RSC; (c) P.-Y. Renard and J.-Y. Lallemand, Bull. Soc. Chim. Fr., 1996, 113, 143; (d) G. Ohanessian, Y. Six and J.-Y. Lallemand, Bull. Soc. Chim. Fr., 1996, 133, 1143 CAS; (e) L. Garnier, B. Plunian, J. Mortier and M. Vaultier, Tetrahedron Lett., 1996, 37, 6699 CrossRef CAS; (f) P.-Y. Renard and J.-Y. Lallemand, Tetrahedron: Asymmetry, 1996, 7, 2523 CrossRef CAS; (g) P.-Y. Renard, Y. Six and J.-Y. Lallemand, Tetrahedron Lett., 1997, 37, 6589 CrossRef CAS.
  7. K. Narasaka, S. Shimada, K. Osoda and N. Iwasawa, Synthesis, 1991, 1171 CrossRef CAS; S. Shimada, K. Osoda and K. Narasaka, Bull. Chem. Soc. Jpn., 1993, 66, 1254 CAS.
  8. The most common tethering approach for Diels–Alder reactions uses carbon–metalloid or carbon–metal precursors. The constraining effects of the tether both accelerate the rate of cycloaddition, and control the regio- and stereo-selectivity of the reaction. The majority of examples employ a C–Si–O tether, such as in the reactions of dienylsilanes: K. Tamao, K. Kobayashi and Y. Ito, J. Am. Chem. Soc., 1989, 111, 6478 Search PubMed; K. J. Shea, A. J. Staab and K. S. Zandi, Tetrahedron Lett., 1991, 32, 2715 CrossRef CAS; K. J. Shea, K. S. Zandi, A. J. Staab and R. Carr, Tetrahedron Lett., 1990, 31, 5885 CrossRef CAS; R.-M. Chen, W.-W. Weng and T.-Y. Luh, J. Org. Chem., 1995, 60, 3272 CrossRef CAS.
  9. For reviews on silicon-tethered reactions, see: L. Fensterbank, M. Malacria and S. McN. Sieburth, Synthesis, 1997, 813 Search PubMed; M. Bols and T. Skrydstrup, Chem. Rev., 1995, 95, 1253 CrossRef CAS.
  10. For the use of alkenylboronic acids as dienophiles in tethered Diels–Alder reactions, see: R. A. Batey, A. N. Thadani and A. J. Lough, J. Am. Chem. Soc., 1999, 121, 450 Search PubMed.
  11. R. W. Hoffmann and S. Dresely, Synthesis, 1988, 103 CrossRef CAS.
  12. Crystal data for 5·0.5(H2O): C17H22O2·0.5(H2O), M= 267.35, orthorhombic, a= 20.2986(7), b= 5.8725(3), c= 25.2100(14)Å, U= 3005.1(2)Å3, T= 293 K, space group Pca21(no. 29), Z= 8, µ(Mo-Kα)= 0.077 mm–1, 29314 reflections measured, 3874 unique (Rint= 0.064) which were used in all calculations. The final wR(F2) was 0.1610 (all data). Single crystals of 5·0.5(H2O) were obtained via slow evaporation of a solution of 5 in EtOAc–hexanes, mounted in inert oil and transfered to the diffractometer. The structure was solved using direct methods and refined by full-matrix least-squares on F2.
  13. Crystal data for 6: C14H22O2, M= 222.32, monoclinic, a= 6.0121(2), b= 12.1615(4), c= 16.7127(5)Å, U= 1221.96 (7)Å3, T= 293 K, space group P21/c(no. 14), Z= 4, µ(Mo-Kα)= 0.078 mm–1, 10537 reflections measured, 2468 unique (Rint= 0.038) which were used in all calculations. The final wR(F2) was 0.1553 (all data). Single crystals of 6 were obtained via slow evaporation of a solution of 6 in EtOAc–hexanes, mounted in inert oil and transfered to the diffractometer. The structure was solved using direct methods and refined by full-matrix least-squares on F2. CCDC 182/1161.
  14. D. A. Evans, E. A. Shaughnessy and D. M. Barnes, Tetrahedron Lett., 1997, 38, 3193 CrossRef CAS; P. Stoss and P. Merrath, Synlett, 1991, 553 CrossRef CAS; L. Crombie, W. M. L. Crombie, S. V. Jamieson and C. J. Palmer, J. Chem. Soc., Perkin Trans. 1, 1988, 1243 RSC; R. Mechoulam, N. K. McCallum and S. Burstein, Chem. Rev., 1976, 76, 75 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.