Sulfur oxidation in supercritical carbon dioxide: dramatic pressure dependant enhancement of diastereoselectivity for sulfoxidation of cysteine derivatives

(Note: The full text of this document is currently only available in the PDF Version )

R. Scott Oakes, Anthony A. Clifford, Keith D. Bartle, Mark Thornton Pett and Christopher M. Rayner


Abstract

The diastereoselective sulfoxidation of chiral sulfides derived from methionine and cysteine has been investigated in conventional solvents and in supercritical carbon dioxide (scCO2); use of tert-butyl hydroperoxide and AmberlystTM 15 ion exchange resin is particularly effective for sulfoxide formation, and with cysteine derivatives shows a dramatic pressure-dependant increase in diastereoselectivity (up to >95% de) in scCO2 compared with conventional solvents, where no diastereoselectivity is observed; the stereochemical configuration of the major product of the oxidation of Cbz-CysSMe-OMe has been confirmed as anti using X-ray crystallography.


References

  1. A. A. Clifford, Fundamentals of Supercritical Fluids, Oxford University Press, 1998 Search PubMed; A. A. Clifford, in Supercritical Fluids, ed. E. Kiran and J. M. H. Levelt Sengers, Kluwer, Dordrecht, 1994, p. 449 Search PubMed.
  2. See for example: L. E. McMahon, P. Timmins, A. C. Williams and P. York, J. Pharm. Sci., 1996, 85, 1064 Search PubMed; J. W. Tom, G. B. Lim, P. G. Debendetti and R. K. Prud'homme, in Supercritical Fluid Engineering Science—Fundamentals and Applications, ed. E. Kiran and J. F. Brennecke, ACS Symp. Ser. 514, 1993, ch. 11 CrossRef CAS; P. G. Debendetti, Supercritical Fluids, ed. E. Kiran and J. M. H. Levelt Sengers, Kluwer, Dordrecht, 1994, p. 719 CrossRef CAS.
  3. For recent examples see: M. A. Carroll and A. B. Holmes, Chem. Commun., 1998, 1395 Search PubMed; D. K. Morita, D. R. Pesiri, S. A. David, W. H. Glaze and W. Tumas, Chem. Commun., 1998, 1397 RSC; M. G. Hitzler, F. R. Smail, S. K. Ross and M. Poliakoff, Chem. Commun., 1998, 359 RSC; D. R. Pesiri, D. K. Morita, W. Glaze and W. Tumas, Chem. Commun., 1998, 1015 RSC; G. R. Haas and J. W. Kollis, Tetrahedron Lett., 1998, 39, 5923 RSC.
  4. A. A. Clifford, K. Pople, W. J. Gaskill, K. D. Bartle and C. M. Rayner, J. Chem. Soc., Faraday Trans., 1998, 94, 1451 RSC.
  5. R. S. Oakes, A. A. Clifford, K. D. Bartle, and C. M. Rayner, unpublished results.
  6. Other sulfonic acid-based catalysts have been reported: F. Bonadies, F. De Angelis, L. Locati and S. Scettri, Tetrahedron Lett., 1996, 37, 7129 Search PubMed; G. W. Breton, J. D. Fields and P. J. Kropp, Tetrahedron Lett., 1995, 36, 3825 CrossRef CAS.
  7. C. M. Rayner and C. P. Baird, J. Chem. Soc., Perkin Trans. 1, 1998, 1973 RSC.
  8. S. Nakamura, K. Goto, M. Kondo, S. Naito, Y. Tsuda and K. Shishido, Bioorg. Med. Chem. Lett., 1997, 7, 2033 CrossRef CAS; C. H. Levenson and R. B. Meyer Jr., J. Med. Chem., 1984, 27, 228 CrossRef CAS.
  9. Variable selectivities (up to 88% de) have been reported for the oxidation of N-protected β-amino phenyl sulfides using TEMPO and sodium hypochlorite see: R. Siedlecka and J. Skarzewski, Synlett, 1996, 757 Search PubMed; A. Lewanowicz, J. Lipinski, R. Siedlecka, J. Skarzewski and F. Baert, Tetrahedron, 1998, 54, 6571 CrossRef CAS.
  10. H. Yamada, T. Kazuoka and A. Sera, J. Am. Chem. Soc., 1988, 110, 7552 CrossRef CAS and references cited therein.
  11. G. M. Sheldrick, Acta Crystallogr., Sect A, 1990, 46, 467 CrossRef; G. M. Sheldrick, G. M. Sheldrick, SHELXL-97 (Release 2), Program for refinement of crystal structures, University of Göttingen, 1998.
Click here to see how this site uses Cookies. View our privacy policy here.