The 20 K structure of p-amino-p′-nitrobiphenyl in the non-constraining environment of its β-cyclodextrin inclusion complex

(Note: The full text of this document is currently only available in the PDF Version )

Tom J. Brett, John J. Stezowski, Shuncheng Liu and Philip Coppens


Abstract

Though p-amino-p′-nitrobiphenyl (PANB) is essentially planar in its crystalline form, it takes on a twisted conformation in its 2:2 crystalline inclusion complex with β-cyclodextrin (β-CD); the angles between the two phenyl rings are 40.6(2) and 42.0(1)° for the two molecules respectively, compared with 44.1(1)° for biphenyl in the gas phase, thus indicating the absence of constraints in the β-CD dimer cage.


References

  1. Comprehensive Supramolecular Chemistry, Vol. 3, Cyclodextrins, ed. J. L. Atwood, J. E. D. Davies, D. D. MacNicol and F. Vogtle, Pergamon, Oxford, 1996 Search PubMed.
  2. P. Piotrowiak, R. Kobetic, T. R. Schatz and G. Strati, J. Phys. Chem., 1995, 99, 2250 CrossRef CAS.
  3. J. Czekalla, W. Liptay and K. O. Meyer, Ber. Bunsengesselschaft, 1963, 67, 465 Search PubMed.
  4. P. Coppens, D. V. Fomitchev, M. D. Carducci and K. Culp, J. Chem. Soc., Dalton Trans., 1998, 865 RSC.
  5. PANB was prepared by nitration of 4-nitrobiphenyl with nitric acid (H. C. Gull and E. E. Turner, J. Chem. Soc., 1929, 491). The product was isolated and reduced with sodium hydrogen sulfide to give PANB (J. P. Idoux, J. Chem. Soc., Sect. C, 1970, 435( Search PubMed.
  6. Crystal data: for (C42H70O35)2·(C12H10N2O2)2·25.5H2O, Mr= 3157.81, monoclinic, P21(no. 4), a= 15.454, b= 31.693, c= 15.255 Å, β= 102.92°, Z= 2, Dc= 1.440 g cm–3, crystal size 0.094 × 0.063 ×0.063 mm. T= 20.0(1) K. Data were collected by the oscillation method at the X3A1 beamline station at the NSLS at BNL at a wavelength of 0.643 Å. A single 20 × 40 cm Fuji BAS-III imaging plate was used for data collection. The HKL suite (Z. Otwinowski, Data Collection and Processing, ed. L. Sawyer, N. Isaacs and S. Bailey, SERC Daresbury Laboratory, Warrington, UK, 1993, p. 56) was used for data processing (Rmerge= 0.058). In all, 20607 unique reflections were recorded to a resolution of 0.68 Å. The structure was solved by isostructural replacement of the β-CD coordinates from an isomorphous structure Search PubMed; Least-squares refinement on F2 of 1951 parameters was carried out using SHELXL97 (G. M. Sheldrick, SHELXL97. Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997) and converged to a final R1= 0.0584, wR2= 0.1539, and GOF = 1.047 for 18109 reflections with Fo > 4σ(Fo). All non-hydrogen atoms were treated anisotropically except those of the lower occupancy PANB sites which were refined as a rigid body with a single group isotropic displacement parameter. A final difference electron density map showed no distinct features with ρmax= 1.352 and ρmin=– 0.828 e Å–3. CCDC 182/1140 Search PubMed.
  7. E. M. Graham, V. M. Miskowski, J. W. Perry, D. R. Coulter, A. E. Stiegman, W. P. Schaefer and R. E. Marsh, J. Am. Chem. Soc., 1989, 111, 8771 CrossRef CAS.
  8. M. Colapietro, A. Domenicano, C. Marciante and G. Portalone, Z. Naturforsch., Teil B, 1982, 37, 1309 Search PubMed.
  9. F. Di Rienzo, A. Domenicano and L. R. Di Sanseverino, Acta Crystallogr., Sect. B, 1980, 36, 586 CrossRef.
  10. D. G. Lister, J. K. Tyler, J. H. Høg and N. W. Larsen, J. Mol. Struct., 1974, 23, 253 CrossRef CAS.
  11. G. P. Charbonneau and Y. Delugeard, Acta Crystallogr., Sect. B, 1977, 33, 1586 CrossRef.
  12. O. Bastiansen, Acta Chem. Scand., 1949, 3, 408 CAS.
  13. A. D. Ronemus, PhD Thesis, University of California, San Diego, 1987.
  14. (a) T. Iwamoto, T. Miyoshi and Y. Susaki, Acta Crystallogr., Sect. B, 1974, 30, 292 CrossRef CAS; (b) A. Lipka and D. Mootz, Z. Anorg. Allg. Chem., 1978, 440, 217 CAS; (c) K. W. Klinkhammer, Chemistry, 1997, 3, 1418 Search PubMed.
  15. Ab initio geometry optimizations were carried out at the HF/6-31G* level using GAUSSIAN94. Optimizations of planar, perpendicular, and twisted geometries showed the twisted conformation to be of lowest energy.
  16. D. Mentzafos, I. M. Mavridis, G. LeBas and G. Tsoucaris, Acta Crystallogr., Sect. B, 1991, 47, 746 CrossRef.
  17. W. Saenger, Inclusion Compounds, ed. J. L. Atwood, J. E. D. Davies and D. D. MacNicol, Academic Press, London, 1984, vol. 2, 231 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.