Enantioselective reduction of ketones with triethoxysilane catalyzed by chiral bis-oxazoline titanium complexes

(Note: The full text of this document is currently only available in the PDF Version )

Marco Bandini, Pier Giorgio Cozzi, Lucia Negro and Achille Umani-Ronchi


Abstract

Chiral bis-oxazoline titanium complexes [Ti(BOX)2X2] prepared from C2 chiral bis-oxazolines, BuLi and titanium salts, catalyze the enantiosective reduction of ketones in the presence of triethoxysilane.


References

  1. R. Hett, C. H. Senanayake and S. Wald, Tetrahedron Lett., 1998, 39, 1705 CrossRef and references cited therein.
  2. Catalytic Asymmetric Synthesis, Ed. I. Ojima, VCH, New York, 1993 Search PubMed; R. Noyori, Asymmetric Catalysis In Organic Synthesis, Wiley, New York, 1994 Search PubMed; R. A. Sheldon, Chirotechnology, Marcel Dekker, New York, 1993 Search PubMed.
  3. (a) M. B. Carter, B. Schiøtt, A. Gutiérrez and S. L. Buchwald, J. Am. Chem. Soc., 1994, 116, 11667 CrossRef CAS; (b) X. Verdaguer, U. E. W. Lange, M. T. Reding and S. L. Buchwald, J. Am. Chem. Soc., 1996, 118, 6784 CrossRef CAS; X. Verdaguer, U. E. W. Lange and S. L. Buchwald, Angew. Chem., 1998, 110, 1174 CrossRef; Angew. Chem., Int. Ed., 1998, 37, 1103 Search PubMedFor the use of other chiral ansa-titanocenes see also: S. Xin and J. F. Harrod, Can. J. Chem., 1995, 73, 999 Search PubMed; R. L. Halterman, T. M. Ramsey and Z. Chen, J. Org. Chem., 1994, 59, 2642 Search PubMed.
  4. G. M. Diamond, R. F. Jordan and J. L. Petersen, J. Am. Chem. Soc., 1996, 118, 8024 CrossRef CAS.
  5. B. Chin and S. L. Buchwald, J. Org. Chem., 1996, 61, 5650 CrossRef CAS.
  6. For a recent and comprehensive review see: A. K. Ghosh, P. Mathivanan and J. Cappiello, Tetrahedron: Asymmetry, 1998, 9, 1 Search PubMed.
  7. Singh has reported the preparation of various titanium(IV)–bis(oxazoline) complexes, but not their use. The structures of the BOX–Ti complexes, prepared in toluene with a 1:1 ligand to titanium reagent ratio, have been proposed to adopt a trigonal bipyramidal geometry in which two nitrogen atoms of the BOX ligand occupy equatorial sites. The author described such complexes as not quite stable: R. P. Singh, Synth. React. Inorg. Met.-Org. Chem., 1997, 27, 155 Search PubMed.
  8. M. Nakamura, M. Arai and E. Nakamura, J. Am. Chem. Soc., 1995, 117, 1179 CrossRef CAS; M. Nakamura, A. Hirai and E. Nakamura, J. Am. Chem. Soc., 1996, 118, 8489 CrossRef CAS; S. Hanessian and R.-Y. Yang, Tetrahedron Lett., 1996, 37, 8997 CrossRef CAS.
  9. The crystal structures of octahedral titanium(III) and titanium(IV) hydroxyphenyloxazoline complexes have been reported: P. G. Cozzi, C. Floriani, A. Chiesi-Villa and C. Rizzoli, Inorg. Chem., 1995, 34, 2921 Search PubMed.
  10. In these cases, only racemic alcohol was obtained. Reduction of titanium depending on the ligand is well known problem in metallocene chemistry.
  11. Aliphatic, non-branched aromatic and cyclic ketones were reduced with our titanium catalyst in lower ees. For example, the reduction of octan-2-one and indan-2-one afforded the corresponding alcohols in 65% yield, 20% ee and 70% yield, 29% ee, respectively.
  12. The absolute configurations of 10a[ref. 3(a)] and 10c(ref. 13) were determined by comparison with the [α]D values reported in the literature. The absolute configurations of 10b and the other halo ketones were assigned by analogy.
  13. S. Itsuno, M. Nakano, K. Miyazaki, H. Masuda, K. Ito, A. Irao and S. Nakahama, J. Chem. Soc., Perkin Trans. 1, 1985, 2039 RSC.
  14. T. Nakai, M. Mori and H. Imma, Synlett., 1996, 1229.
  15. D. J. Parks and W. E. Piers, J. Am. Chem. Soc., 1996, 118, 9440 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.