Dipicolinic acid (DPA) assay revisited and appraised for spore detection

(Note: The full text of this document is currently only available in the PDF Version )

Alistair A. Hindle and Elizabeth A. H. Hall


Abstract

Delayed gate fluorescence detection of dipicolinic acid (DPA), a universal and specific component of bacterial spores, has been appraised for use in a rapid analytical method for the detection of low concentrations of bacterial spores. DPA was assayed by fluorimetric detection of its chelates with lanthanide metals. The influence of the choice and concentration of lanthanide and buffer ions on the fluorescence assay was studied as well as the effects of pH and temperature. The optimal system quantified the fluorescence of terbium monodipicolinate in a solution of 10 µM terbium chloride buffered with 1 M sodium acetate, pH 5.6 and had a detection limit of 2 nM DPA. This assay allowed the first real-time monitoring of the germination of bacterial spores by continuously quantifying exuded DPA. A detection limit of 104Bacillus subtilis spores ml–1 was reached, representing a substantial improvement over previous rapid tests.


References

  1. J. M. Hausenbauer, W. M. Waites and P. Setlow, J. Bacteriol., 1997, 129, 1148.
  2. P. J. Setlow, Appl. Bact. Symp. Supp., 1994, 76, 49S Search PubMed.
  3. M. R. Blake and B. C. Weimer, Appl. Environ. Microbiol., 1997, 63, 1643 CAS.
  4. M. Te Giffel PhD Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1997.
  5. D. D. Slaten, R. I. Oropeza and S. B. Werner, Public Health Rep., 1992, 107, 477 Search PubMed.
  6. P. McClure, Methods to study germination of bacterial spores, presentation to Fundamental and Applied Aspects of Bacterial Spores, a FEMS International Conference, Cambridge, July 1997 Search PubMed.
  7. L. D. S. Smith, Botulism, The Organism, Its Toxins, The Disease, Charles C. Thomas, Springfield, IL, 1977 Search PubMed.
  8. B. M. Lund, J. Ind. Microbiol., 1993, 12, 144 Search PubMed.
  9. K. L. Dodds, J. Ind. Microbiol., 1993, 12, 139 Search PubMed.
  10. D. L. Gatto-Menking, H. Yu, J. G. Bruno, M. T. Goode, M. Miller and A. Zulich, Biosens. Bioelectron., 1995, 10, 501 CrossRef CAS.
  11. J. J. Quinlan and P. M. Foegeding, J. Rapid Methods Automation Microbiol., 1998, 6, 1 Search PubMed.
  12. S. Udo, J. Agric. Chem. Soc. Jpn., 1936, 12, 386 Search PubMed.
  13. J. F. Powell, Biochem. J., 1953, 54, 210 CAS.
  14. W. G. Murell, Bact. Spore, 1969, 1, 216 Search PubMed.
  15. G. P. Kalle and P. S. Khandekar, J. Biosci., 1983, 5, 43 Search PubMed.
  16. M. W. Tabor, J. MacGee and J. W. Holland, Appl. Environ. Microbiol., 1976, 31, 25 CAS.
  17. A. D. Warth, Appl. Environ. Microbiol., 1979, 38, 1029 CAS.
  18. H. Paulus, Anal. Biochem., 1981, 114, 407 CAS.
  19. E. Ghiamati, R. Manoharan, W. H. Nelson and J. F. Sperry, Appl. Spectrosc., 1992, 46, 357 CAS.
  20. D. Helm and D. Naumann, FEMS Microbiol. Lett., 1995, 126, 75 CrossRef CAS.
  21. J. Volke and V. Volkova, Chem. Listy, 1954, 48, 1031 Search PubMed.
  22. G. S. Porter, M. W. Brown and M. R. W. Brown, Biochem. J., 1967, 102, 19c CAS.
  23. O. R. Brown, J. A. Harrison and K. S. Sastry, Electroanal. Chem. Interfacial Electrochem., 1975, 58, 387 CrossRef CAS.
  24. S. Ferraro, P. Passamonti, V. Bartoccia and F. Pucciarelli, J. Chem. Soc., Faraday Trans., 1997, 93, 289 RSC.
  25. Y. Matano, Y. Yasuda and K. Tochikubo, FEMS Microbiol Lett., 1993, 109, 189 CrossRef CAS.
  26. N. Grecz and T. Tang, J. Gen. Microbiol., 1970, 63, 303 Search PubMed.
  27. I. R. Scott and D. J. Ellar, Biochem. J., 1978, 174, 635 CAS.
  28. A. D. Warth, Anal. Biochem., 1983, 130, 502 CrossRef CAS.
  29. T. D. Barela and A. D. Sherry, Anal. Biochem., 1976, 76, 351 CrossRef.
  30. L. E. Sacks, Appl. Environ. Microbiol., 1990, 56, 1185 CAS.
  31. D. L. Rosen, C. Sharpless and L. B. McGown, Anal. Chem., 1997, 69, 1082 CrossRef CAS.
  32. P. M. Pellegrino, N. F. Fell Jr., D. L. Rosen and J. B. Gillespie, Anal. Chem., 1998, 70, 1755 CrossRef CAS.
  33. S. Lis, Chem. Anal. (Warsaw), 1993, 38, 443 Search PubMed.
  34. B. R. Judd, Phys. Rev., 1962, 127, 750 CrossRef CAS.
  35. G. S. Ofelt, J. Chem. Phys., 1962, 37, 511 CrossRef.
  36. E. D. Moorhead, V. E. Dauyotis and M. M. Stephen, Anal. Chim. Acta., 1984, 162, 161 CrossRef CAS.
  37. S. H. Jung, S. K. Yoon, J. G. Kim and J. G. Kang, Bull. Kor. Chem. Soc., 1992, 13, 650 CAS.
  38. J. G. Kim, S. K. Yoon and J. G. Kang, Bull. Kor. Chem. Soc., 1992, 13, 54 CAS.
  39. J. G. Kim, S. K. Yoon and J. G. Kang, Bull. Kor. Chem. Soc., 1996, 17, 854 CAS.
  40. S. I. Weissman, J. Chem. Phys., 1942, 10, 214 CrossRef CAS.
  41. F. R. G. E. Silva and O. L. Malta, J. Alloys Compounds, 1997, 250, 427 CrossRef.
  42. E. Soini and T. Lövgren, CRC Crit. Rev. Anal. Chem., 1987, 18, 104 Search PubMed.
  43. R. D. Bautista, A. I. Jiménez, F. Jiménez and J. J. Arias, Talanta, 1996, 43, 421 CrossRef CAS.
  44. F. S. Richardson, Chem. Rev., 1982, 82, 541 CrossRef CAS.
  45. P. Guerriero, U. Casellato, S. Sitran, P. A. Vigato and R. Graziani, Inorg. Chim. Acta., 1987, 133, 337 CrossRef CAS.
  46. B. M. Alsaadi, F. J. C. Rossotti and R. J. P. Williams, J. Chem. Soc., Dalton Trans., 1980, 597 RSC.
  47. P. Guerriero, U. Casellato, S. Sitran, P. A. Vigato and R. Graziani, Inorg. Chim. Acta, 1987, 139, 67 CrossRef CAS.
  48. J. Albertsson, Acta Chem. Scand., 1972, 26, 958.
  49. T. K. Trout, J. M. Bellama, R. A. Faltynek and F. E. Brinckman, Inorg. Chim. Acta, 1989, 155, 13 CrossRef CAS.
  50. I. Grenthe, J. Am. Chem. Soc., 1961, 83, 360 CrossRef CAS.
  51. D. J. Ellar, 1997, personal communication.
Click here to see how this site uses Cookies. View our privacy policy here.