Amberlite XAD-2 functionalized with chromotropic acid: synthesis of a new polymer matrix and its applications in metal ion enrichment for their determination by flame atomic absorption spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

Pankaj Kumar Tewari and Ajai Kumar Singh


Abstract

Chromotropic acid has been covalently linked with the benzene ring of Amberlite XAD-2, through an –N[double bond, length half m-dash]N– group, to design a new polymer matrix. Elemental analyses, thermogravimetric analyses and infrared spectra were used to characterize the resulting functionalized Amberlite XAD-2. It was used for the separation and preconcentration of CdII, CoII, CuII, NiII, FeIII and ZnII prior to their determination by flame atomic absorption spectrometry. The optimum pH values for quantitative sorption are 5.0–6.0, 4.0–4.5, 4.5–5.5, 4.0–5.0, 5.0–6.5 and 5.5–7.0 for CdII, CoII, CuII, FeIlI, NiII and ZnII, respectively. All these metal ions can be desorbed with 2 mol l–1 HCl or HNO3 (recovery, 96–100%). The sorption capacity of the resin is 9.35, 3.84, 8.50, 3.24, 6.07 and 9.65 mg g–1 of resin for Cd, Co, Cu, Ni, Fe and Zn, respectively. Tolerance limits for electrolytes NaCl, NaBr, NaNO3, Na2SO4 and Na3PO4 on the sorption of these metal ions are reported. NaNO3, Na2SO4 and Na3PO4 are tolerable up to a concentration level of a few millimoles in the sorption of 0.1 mg l–1 Cd. Similarly, NaNO3 with Cu (0.1 mg l–1) and Na3PO4 with Fe (0.1 mg l–1) interfere when their concentration exceeds a few millimoles. The enrichment of all of these metal ions is quantitative in the presence of 0.1 mol l–1 of MgII and CaII. The preconcentration factors are found to be 100, 150, 100, 120, 200 and 200 for Cd, Co, Cu, Fe, Ni and Zn (concentration level, 5–10 µg l–1), respectively, and their respective t1/2 values are 2.6, 4.3, 2.9, 5.8, 3.4 and 2.4 min. The simultaneous determination of Cd, Co, Cu, Fe, Ni and Zn is possible. The method was applied to the determination of these six metal ions in river water samples (RSD < 7.8%). Cobalt contents of pharmaceutical samples (vitamin tablets) were preconcentrated by the present chelating resin and estimated by flame atomic absorption spectrometry, with RSD < 1.1%.


References

  1. C. Kantipuly, S. Katragadda, A. Chow and H. D. Gesser, Talanta, 1990, 37, 491 CrossRef CAS.
  2. (a) A. Akelah and A. Moet, Functionalized Polymers and Their Applications, Chapman and Hall, London, 1st edn., 1990, ch. 5, p. 139 Search PubMed; (b) B. S. Garg, R. K. Sharma, N. Bhojak and S. Mittal, Microchem J., 1999, 61, 94 CrossRef CAS.
  3. G. Persaud and F. F. Cantwell, Anal. Chem, 1992, 64, 89 CrossRef.
  4. O. A. Zapozozhets, O. Yu. Nadzhafova, A. I. Zubenko and V. V. Sukhan, Talanta, 1994, 41, 2067 CrossRef CAS.
  5. S. Akman, H. Ince and U. Koklu, Anal. Sci., 1991, 7, 799 CAS.
  6. B. B. Prasad, A. Kumar and S. Sundd, React. Polym., 1994, 23, 229 Search PubMed.
  7. L. Benyahya and J. M. Garnier, Environ. Sci. Technol., 1999, 33, 1398 CrossRef.
  8. A. Tong, Y. Akama and S. Tanaka, Analyst, 1990, 115, 947 RSC.
  9. K. Ohta and K. Tanaka, Analyst, 1999, 124, 505 RSC.
  10. M. S. Diallo, L. Balogh, A. Shafagati, J. H. Johnson, W. A. Goddard and D.A. Tomalia, Environ. Sci. Technol., 1999, 33, 820 CrossRef CAS.
  11. B. Paull, M. Foulkes and P. Jones, Analyst, 1994, 119, 937 RSC.
  12. B. Wen, X. Q. Shan and S. G. Xu, Analyst, 1999, 124, 621 RSC.
  13. K. A. Tony, S. Kartikeyan, B. Vijayalakshmy, T. P. Rao and C. S. P. Iyer, Analyst, 1999, 124, 191 RSC.
  14. M. D. Burford, M. Z. Ozel, A. A. Clifford, K. D. Bartle, Y. Lin, C. M. Wai and N. G. Smart, Analyst, 1999, 124, 609 RSC.
  15. V. K. Jain, S. S. Sait, P. Shrivastav and Y. K. Agarwal, Talanta, 1997, 45, 397 CrossRef CAS.
  16. R. Saxena, A. K. Singh and D. P. S. Rathore, Analyst, 1995, 120, 403 RSC.
  17. S. L. C. Ferreira, C. F. Brito, A. F. Dantas, N. M. L. Araújo and A. C. S. Costa, Talanta, 1999, 48, 1173 CrossRef CAS.
  18. R. Saxena and A. K. Singh, Anal. Chim. Acta, 1997, 340, 285 CrossRef CAS.
  19. R. Saxena, A. K. Singh and S. S. Sambi, Anal. Chim. Acta, 1994, 295, 199 CrossRef CAS.
  20. S. Hoshi, H. Fujisawa, K. Nakamura, S. Nakata, M. Uto and K. Akatsuka, Talanta, 1994, 41, 503 CrossRef CAS.
  21. M. F. E. Dominguez, M. C. Y. Biurrun and M. P. B. Barrera, Analyst, 1998, 123, 105 RSC.
  22. R. Compano, R. Ferrer, J. Guiteras and M. D. Prat, Analyst, 1994, 119, 1225 RSC.
  23. R. Shah and S. Devi, Talanta, 1998, 45, 1089 CrossRef CAS.
  24. K. Z. Perényi, A. Lásztitz, Z. Horváth and Á. Lévai, Talanta, 1998, 47, 673 CrossRef.
  25. K. E. Geckeler and K. Volchek, Environ. Sci. Technol., 1996, 30, 725 CrossRef CAS.
  26. A. I. Vogel, A Text Book of Quantitative Inorganic Analysis, Longman, London, 4th edn., 1978, (a)pp. 318, 886; (b)125 Search PubMed.
  27. Gel Filtration—Theory and Practice, A Manual of Pharmacia, Bramma, Sweden, 1994, p. 14 Search PubMed.
  28. B. Wen, X. Q. Shan, R. X. Liu and H. X. Tang, Fresenius' J. Anal. Chem., 1999, 363, 251 CrossRef CAS.
  29. A. R. Sarkar, P. K. Datta and M. Sarkar, Talanta, 1996, 43, 1857 CrossRef CAS.
  30. B. S. Garg, J. S. Bist, R. K. Sharma and N. Bhojak, Talanta, 1996, 43, 2093 CrossRef CAS.
  31. M. Yaman and S. Güçer, Analyst, 1995, 120, 101 RSC.
  32. B. Prusisz and W. Zyrnicki, Fresenius' J. Anal. Chem., 1999, 363, 110 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.