Comparison of formats for the development of fiber-optic biosensors utilizing sol–gel derived materials entrapping fluorescently-labelled protein

(Note: The full text of this document is currently only available in the PDF Version )

Kulwinder Flora and John D. Brennan


Abstract

The development of fiber-optic biosensors requires that a biorecognition element and a fluorescent reporter group be immobilized at or near the surface of an optical element such as a planar waveguide or optical fiber. In this study, we examined a model biorecognition element–reporter group couple consisting of human serum albumin that was site-selectively labelled at Cys 34 with iodoacetoxy-nitrobenzoxadiazole (HSA–NBD). The labelled protein was encapsulated into sol–gel derived materials that were prepared either as monoliths, as beads that were formed at the distal tip of a fused silica optical fiber, or as thin films that were dipcast along the length of a glass slide or optical fiber. For fiber-based studies, the entrapped protein was excited using a helium–cadmium laser that was launched into a single optical fiber, and emission was separated from the incident radiation using a perforated mirror beam-splitter, and detected using a monochromator–photomultiplier tube assembly. Changes in fluorescence intensity were generated by denaturant-induced conformational changes in the protein or by iodide quenching. The analytical parameters of merit for the different encapsulation formats, including minimum protein loading level, response time and limit-of-detection, were examined, as were factors such as protein accessibility, leaching and photobleaching. Overall, the results indicated that both beads and films were suitable for biosensor development. In both formats, a substantial fraction of the entrapped protein remained accessible, and the entrapped protein retained a large degree of conformational flexibility. Thin films showed the most rapid response times, and provided good detection limits for a model analyte. However, the entrapment of proteins into beads at the distal tip of fibers provided better signal-to-noise and signal-to-background ratios, and required less protein for preparation. Hence, beads appear to be the most viable method for interfacing of proteins to optical fibers.


References

  1. J. D. Brennan, Appl. Spectrosc., 1999, 53, 106A CAS.
  2. (a) L. M. Ellerby, C. R. Nishida, F. Nishida, S. A. Yamanaka, B. Dunn, J. Selverstone Valentine and J. I. Zink, Science(Washington, D.C.), 1992, 255, 1113 Search PubMed; (b) B. C. Dave, B. Dunn, J. S. Valentine and J. I. Zink, Anal. Chem., 1994, 66, 1120A CrossRef CAS.
  3. (a) S. Braun, S. Rappoport, R. Zusman, D. Avnir and M. Ottolenghi, Mater. Lett., 1990, 10, 1 CrossRef CAS; (b) D. Avnir, S. Braun, O. Lev and M. Ottolenghi, Chem. Mater., 1994, 6, 1605 CrossRef CAS.
  4. (a) R. Wang, U. Narang, P. N. Prasad and F. V. Bright, Anal. Chem., 1993, 65, 2671 CrossRef CAS; (b) A. Turniansky, D. Avnir, A. Bronshtein, N. Aharonson and M. Altstein, J. Sol-Gel Sci. Technol., 1996, 7, 135 Search PubMed; (c) J. Livage, C. Roux, J. M. Da Costa, I. Desportes and J. F. Quinson, J. Sol-Gel Sci. Technol., 1996, 7, 45 Search PubMed; (d) A. Bronshtein, N. Aharonson, D. Avnir, A. Turniansky and M. Altstein, Chem. Mater., 1997, 9, 2632 CrossRef CAS.
  5. F. Nishida, J. M. McKiernan, B. Dunn, J. I. Zink, C. J. Brinker and A. J. Hurd, J. Am. Ceram. Soc., 1995, 78, 1640 CAS.
  6. (a) L. Zheng, W. R. Reid and J. D. Brennan, Anal. Chem., 1997, 69, 3940 CrossRef CAS; (b) P. L. Edmiston, C. L. Wambolt, M. K. Smith and S. S. Saavedra, J. Collord. Interface Sci., 1994, 163, 395 Search PubMed.
  7. J. D. Jordan, R. A. Dunbar and F. V. Bright, Anal. Chem., 1995, 67, 2436 CrossRef CAS.
  8. (a) L. Zheng and J. D. Brennan, Analyst, 1998, 123, 1735 RSC; (b) C. L. Wambolt and S. S. Saavedra, J. Sol-Gel Sci. Technol., 1996, 7, 53 Search PubMed.
  9. C. Shen and N. M. Kostic, J. Am. Chem. Soc., 1997, 119, 1304 CrossRef CAS.
  10. (a) J. M. Miller, B. Dunn, J. S. Valentine and J. I. Zink, J. Non-Cryst. Solids, 1996, 220, 279 CrossRef; (b) Z. Chen, D. L. Kaplan, K. Yang, J. Kumar, K. A. Marx and S. K. Tripathy, J. Sol-Gel Sci. Technol., 1996, 7, 99 Search PubMed.
  11. (a) S. Braun, S. Shtelzer, S. Rappoport, D. Avnir and M. Ottolenghi, J. Non-Cryst. Solids, 1992, 147, 739; (b) S. Wu, L. M. Ellerby, J. S. Cohan, B. Dunn, M. A. El-Sayed, J. S. Valentine and J. I. Zink, Chem. Mater., 1993, 5, 115 CrossRef CAS; (c) U. Narang, P. N. Prasad, F. V. Bright, K. Ramanathan, N. D. Kumar, B. D. Malhotra, M. N. Kamalasanan and S. Chandra, Anal. Chem., 1994, 66, 3139 CrossRef CAS; (d) U. Narang, P. N. Prasad, F. V. Bright, K. Kumar, N. D. Kumar, B. D. Malhotra, M. N. Kamalasanan and S. Chandra, Chem. Mater., 1994, 6, 1596 CrossRef CAS; (e) S. A. Yamanaka, B. Dunn, J. S. Valentine and J. I. Zink, J. Am. Chem. Soc., 1995, 117, 9095 CrossRef CAS; (f) D. J. Blyth, J. W. Aylott, D. J. Richardson and D. A. Russell, Analyst, 1995, 120, 2725 RSC; (g) J. S. Lundgren and F. V. Bright, Anal. Chem., 1996, 68, 3377 CrossRef CAS; (h) J. W. Aylott, D. J. Richardson and D. A. Russell, Analyst, 1997, 122, 77 RSC; (i) F. Akbarian, A. Lin, B. Dunn, J. S. Valentine and J. I. Zink, J. Sol-Gel Sci. Technol., 1997, 8, 1067 Search PubMed; (j) S. A. Yamanaka, F. Nishida, L. M. Ellerby, C. R. Nishida, B. Dunn, J. S. Valentine and J. I. Zink, Chem. Mater., 1992, 4, 495 CrossRef CAS.
  12. K. Flora and J. D. Brennan, Anal. Chem., 1998, 70, 4505 CrossRef CAS.
  13. K. Flora, M. A. Dabrowski, S. P. Musson and J. D. Brennan, Can. J. Chem., 1999, in the press Search PubMed.
  14. (a) A. Navas Diaz and M. C. Ramos Peinado, Sens. Actuators B, 1997, 38-39, 426; (b) B. D. MacCraith, C. McDonagh, A. K. McEvoy, T. Butler, G. O'Keeffe and V. Murphy, J. Sol-Gel Sci. Technol., 1997, 8, 1053 Search PubMed.
  15. (a) J. W. Aylott, D. J. Richardson and D. A. Russell, Chem. Mater., 1997, 9, 2261 CrossRef CAS; (b) U. Narang, P. N. Prasad and F. V. Bright, Chem. Mater., 1994, 6, 1596 CrossRef CAS.
  16. B. C. Dave, H. Soyez, J. M. Miller, B. Dunn, J. S. Valentine and J. I. Zink, Chem. Mater., 1995, 7, 1431 CrossRef CAS.
  17. B. C. Dave, J. M. Miller, B. Dunn, J. S. Valentine and J. I. Zink, J. Sol-Gel Sci. Technol., 1997, 8, 629 Search PubMed.
  18. J. D. Jordan, R. A. Dunbar and F. V. Bright, Anal. Chim. Acta, 1996, 332, 83 CrossRef CAS.
  19. B. D. MacCraith, Sens. Actuators B, 1993, 11, 29 CrossRef.
  20. K. Flora, J. D. Brennan, G. A. Baker, M. A. Doody and F. V. Bright, Biophys. J., 1998, 75, 1084 CAS.
  21. R. S. Brown, J. D. Brennan and U. J. Krull, Microchem. J., 1994, 50, 337 CrossRef CAS.
  22. S. Lin and W. S. Struve, Photochem. Photobiol., 1991, 54, 361 CAS.
  23. G. A. Pico, Int. J. Biol. Macromol., 1997, 20, 63 CrossRef CAS.
  24. (a) M. R. Eftink and C. A. Ghiron, Biochemistry, 1976, 15, 672 CrossRef CAS; (b) M. R. Eftink and C. A. Ghiron, Biochemistry, 1977, 16, 5546 CrossRef CAS; (c) M. R. Eftink and C. A. Ghiron, Biochim. Biophys. Acta, 1987, 916, 343 CrossRef CAS.
  25. J. D. Brennan, J. S. Hartman, E. I. Ilnicki and M. Rakic, Chem. Mater., 1999, in the press Search PubMed.
  26. M. Guglielmi, P. Colombo, F. Peron and L. Mancinelli Degli Esposti, J. Mater. Sci., 1992, 27, 5052 CAS.
  27. R. Peters and K. Beck, Proc. Natl. Acad. Sci., 1983, 80, 7183 CAS.
  28. R. P. Haugland, Molecular Probes Catalog, Molecular, Probes Inc., Eugene, OR, 1992, ch. 2 Search PubMed.
  29. R. Narazaki, T. Maruyama and M. Otagiri, Biochim. Biophys. Acta, 1997, 1338, 275 CrossRef CAS.
  30. C. J. Brinker and G. W. Scherer, Sol-Gel Science, Academic Press, New York, USA1989 Search PubMed.
  31. M. Gerstein, A. M. Lesk and C. Chothia, Biochemistry, 1994, 33, 6739 CrossRef CAS.
  32. (a) J. D. Brennan, J. Fluores., 1999, in the press Search PubMed; (b) H. W. Hellinga and J. S. Marvin, Trends Biotechnol., 1998, 16, 183 CrossRef CAS; (c) K. A. Giuliano, P. L. Post, K. M. Hahn and D. L. Taylor, Annu. Rev. Biophys. Biomol. Struct., 1995, 24, 405 CrossRef CAS.
  33. (a) S. Xu, L. Ballard, Y. J. Kim and J. Jonas, J. Phys. Chem., 1995, 99, 5787 CrossRef CAS; (b) J.-P. Korb, A. Delville, S. Xu, G. Demeulenaere, P. Costa and J. Johas, J. Chem. Phys., 1994, 101, 7074 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.