Multivariate determination of several compositional parameters related to the content of hydrocarbon in naphtha by MIR spectroscopy

(Note: The full text of this document is currently only available in the PDF Version )

Santiago Macho, Ricard Boqué, Ma Soledad Larrechi and F. Xavier Rius


Abstract

Several compositional parameters of the main hydrocarbon families are determined in naphtha. This hydrocarbon mixture is traditionally analysed by gas chromatography (GC) but there are several alternative spectroscopic methods, such as near-infrared spectroscopy combined with multivariate calibration. Spectroscopic methods have the advantage that they are faster and more suitable for on-line analysis. Previous studies have determined the global percentage of each hydrocarbon family: linear and branched paraffins, naphthenes and aromatic compounds. Here we present the determination by mid-infrared (MIR) spectroscopy and multivariate calibration of the most detailed compositional parameters provided by gas chromatography. Results were good, that is to say there was no bias and the root mean square error of cross validation (RMSECV) was low, for the determination of all the detailed naphthenes and aromatic compounds, and most n-paraffins and isoparaffins. Several methods of detecting outliers are discussed and the quality of the models is evaluated by sample specific error predictions calculated by two approaches: the Unscrambler expression and the Faber–Kowalski expression. The proposed method enables a more specific analysis of naphtha than other methods and provides the same information as GC.


References

  1. D. Lambert and A. Martens, Eur. Pat., 0 285 251, A1, 1988 Search PubMed.
  2. J. J. Kelly, C. H. Barlow, M. Jinguji and J. B. Callis, Anal. Chem., 1989, 61, 313 CrossRef CAS.
  3. J. J. Kelly and J. B. Callis, Anal. Chem., 1990, 62, 1444 CrossRef CAS.
  4. A. F. Parisi, L. Nogueiras and H. Prieto, Anal. Chim. Acta, 1990, 238, 95 CrossRef CAS.
  5. S. M. MaggardU.S. Pat. 5,349,188, 1990 Search PubMed.
  6. A. Iob, M. A. Ali, B. S. Tawabini and N. M. Abbas, Fuel, 1996, 75, 1060 CrossRef CAS.
  7. G. E. Fodor, K. B. Kohl and R. L. Mason, Anal. Chem., 1996, 68, 23 CrossRef CAS.
  8. N. M. Faber and B. R. Kowalski, Chemom. Intell. Lab. Syst., 1996, 34, 283 CrossRef.
  9. Unscrambler v. 4.00. User's Guide, Camo A/S, Trondheim, Norway, 1992, p. 266 Search PubMed.
  10. R. J. Barnes, M. S. Dhanoa and S. J. Lister, Appl. Spectrosc., 1989, 43, 772 CAS.
  11. B. Hopkins, Ann. Bot., 1954, 18, 213.
  12. B. Mertens, M. Thompson and T. Fearn, Analyst, 1994, 119, 2777 RSC.
  13. V. Centner, D. L. Massart and O. E. de Noord, Anal. Chim. Acta, 1996, 330, 1 CrossRef CAS.
  14. M. Stone, J. Roy. Statist. Soc., 1974, 36, 111 Search PubMed.
  15. D. M. Haaland and E. V. Thomas, Anal. Chem., 1988, 60, 1193 CrossRef CAS.
  16. K. Esbensen, S. Schönkopf and T. Midtgaard, Multivariate Analysis—In Practice, Camo A/S, Trondheim, Norway, 1996, p. 111 Search PubMed.
  17. K. R. Beebe, R. J. Pell and M. B. Seasholtz, Chemometrics a Practical Guide, John Wiley & Sons, New York, USA, 1998, p. 303 Search PubMed.
  18. J. Riu and F. X. Rius, Anal. Chem., 1996, 68, 1851 CrossRef CAS.
  19. N. M. Faber, D. L. Duewer, S. J. Choquette, T. L. Green and S. N. Chesler, Anal. Chem., 1998, 70, 2972 CrossRef CAS.
  20. S. De Vries and C. J. F. Ter Braak, Chemom. Intell. Lab. Syst., 1995, 30, 239 CrossRef CAS.
  21. M. Høy, K. Steen and H. Martens, Chemom. Intell. Lab. Syst., 1998, 44, 123 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.