Characterisation and determination of phytochelatins in plant extracts by electrospray tandem mass spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

Véronique Vacchina, Hubert Chassaigne, Ryszard Łobiński, Matjaz Oven and Meinhard H. Zenk


Abstract

A method based on pneumatically assisted electrospray ionisation tandem mass spectrometry (ESI MS-MS) was developed for the identification, sequencing and determination of phytochelatin (PC) peptides in plant tissue and plant cell cytosols. The ionization and fragmentation conditions were optimized using a series of (GluCys)2Gly (PC2), (GluCys)3Gly (PC3), and (GluCys)4Gly (PC4) standards prepared from glutathione by enzymatically (γ-glutamylcysteine dipeptyl transpeptidase) assisted biosynthesis in the presence of Cd2+. Phytochelatins were found to ionize readily to produce a characteristic mono-protonated ion. The collision-induced dissociation (CID) of this ion followed by mass spectrometry (MS-MS mode) allowed the determination of the amino acid sequence of each of the PCs. Calibration curves were linear up to a concentration of 2 µg ml–1 in the MS and MS-MS modes with the detection limits at the low ng ml–1 level. The method was applied to the determination of phytochelatin peptides biosynthesized by a number of plant cell cultures exposed to the Cd stress. The results agreed with those obtained by an independent procedure based on reversed-phase HPLC with post-column derivatization of the –SH groups with 5,5′-dithiobis-2-nitrobenzoic acid and spectrophotometric detection.


References

  1. Heavy Metal Stress in Plants—From Molecules to Ecosystem, ed. M. N. V. Prasad and J. Hagemeyer, Springer, Heidelberg, 1999, p. 401 Search PubMed.
  2. E. Grill, E. L. Winnacker and M. H. Zenk, Methods Enzymol., 1991, 205, 333 CAS.
  3. W. E. Rauser, Annu. Rev. Biochem., 1990, 59, 61 CrossRef.
  4. M. H. Zenk, Gene, 1996, 179, 21 CrossRef CAS.
  5. E. Grill, S. Löffler, E. L. Winnacker and M. H. Zenk, Proc. Natl. Acad. Sci., 1989, 86, 6838 CAS.
  6. W. Gekeler, E. Grill, E. L. Winnacker and M. H. Zenk, Naturforsch., 1989, 44C, 361 Search PubMed.
  7. E. Grill, W. Gekeler, E. L. Winnacker and M. H. Zenk, FEBS Lett., 1986, 205, 47 CrossRef CAS.
  8. S. Klapheck, W. Fliegner and I. Zimmer, Plant Physiol., 1994, 104, 1325 CrossRef CAS.
  9. P. Meuwly, P. Thibault, A. L. Schwan and W. E. Rauser, Plant J., 1995, 7, 391 CrossRef CAS.
  10. J. Barbas, V. Santhanagopalan, M. Blasczynski, W. R. Ellis Jr. and D. R. Winge, J. Inorg. Biochem., 1992, 48, 95 CrossRef CAS.
  11. I. Leopold and D. Günther, Fresenius' J. Anal. Chem., 1997, 359, 364 CrossRef CAS.
  12. I. Leopold, D. Günther and D. Neumann, Analusis, 1998, 26, M28 CAS.
  13. E. Grill, J. Thumann, E. L. Winnacker and M. H. Zenk, Plant Cell Rep., 1998, 7, 375.
  14. H. Harmens, P. R. Den Hartog, W. M. Ten Bookum and J. A. C. Verkleij, Plant Physiol., 1993, 103, 1305 CAS.
  15. A. Tukendorf and W. E. Rauser, Plant Sci., 1990, 70, 155 CrossRef CAS.
  16. U. N. Rai, R. D. Tripathi, M. Gupta and P. Chandra, J. Environ. Sci. Health, 1995, A30, 2007 Search PubMed.
  17. S. Klapheck, W. Fliegner and I. Zimmer, Plant Physiol., 1994, 104, 1325 CrossRef CAS.
  18. M. Isobe, D. Uyakul, K. Liu and T. Goto, Agric. Biol. Chem., 1990, 54, 1651 CAS.
  19. S. A. Hofstadler, R. Bakhtiar and R. D. Smith, J. Chem.Educ., 1996, 73, A82 CAS.
  20. J. R. Yates, III, A. L. McCormack, A. J. Link, D. Schieltz, J. Eng and L. Hays, Analyst, 1996, 121, 65R RSC.
  21. H. Chassaigne and R. Oobiński, Analyst, 1998, 113, 131 RSC.
  22. R. Oobiński, H. Chassaigne and J. Szpunar, Talanta, 1998, 46, 271 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.