Multi-electrode detection in voltammetry . Part 3. Effects of array configuration on the Hadamard multiplexed voltammetric technique

(Note: The full text of this document is currently only available in the PDF Version )

Renato S. Freire, Jarbas J. R. Rohwedder and Celio Pasquini


Abstract

The effect of the number of electrodes and their relative distribution on the gain of the signal-to-noise ratio (SNR) in a multiplexed voltammetric measurement was evaluated. A voltammetric multi-channel instrument was constructed capable of operating with up to 63 ultramicroelectrodes (mercury coated copper discs , diameter 55 µm). The gain in the SNR was investigated as a function of the number of electrodes (15, 31 and 63) in the array. For each array a design matrix was employed for the multiplexed measurements. The results show that the detection limit for Pb(II) can be improved 5.1-fold by employing 63 electrodes. The overlapping effect of diffusion layers was also evaluated and the results allow the conclusion that, for multiplexed readings obtained at 100 per second, and when the distance between adjacent electrodes is less than 20 times their diameter, the radial component is disturbed, causing a reduction in the faradaic current. On the other hand, by keeping the distance greater than this limit, the multiplex gain can be fully achieved with a substantial reduction in data acquisition time.


References

  1. R. M. Wightman, Anal. Chem., 1981, 53, 1125A CrossRef CAS .
  2. A. M. Bond, Analyst, 1994, 119, R1 RSC .
  3. A. M. Bond, M. Fleischmann and J. Robinson, J. Electroanal. Chem., 1984, 172, 11 CrossRef CAS .
  4. A. M. Bond, M. Fleischmann and J. Robinson, J. Electroanal. Chem., 1984, 168, 299 CrossRef CAS .
  5. A. M. Bond, M. Fleischmann and J. Robinson, J. Electroanal. Chem., 1984, 180, 257 CrossRef CAS .
  6. C. M. Lawrence and J. M. Slater, Anal. Proc., 1992, 29, 12 Search PubMed .
  7. R. M. Wightman and D. O. Wipf, Electroanal. Chem., 1989, 15, 267 .
  8. A. M. Bond, K. B. Oldham and C. G. Zoski, Anal. Chim. Acta., 1989, 216, 89 CrossRef .
  9. Z. Stojek, Mikrochim. Acta, Part II, 1991, 353 Search PubMed .
  10. R. M. Wightman and D. O. Wipf, Electroanal. Chem., 1989, 15, 267 .
  11. A. Fitch and D. Evans, J. Electroanal. Chem., 1986, 202, 83 CrossRef CAS .
  12. W. L. Caudili, J. O. Howell and R. M. Wightman, Anal. Chem., 1982, 54, 2532 CrossRef CAS .
  13. L. J. Magge Jr. and J. Osteryoung, Anal. Chem., 1989, 61, 2124 CrossRef .
  14. O. Niwa, T. Horiuchi, M. Morita, T. Huang and P. T. Kissinger, Anal. Chim. Acta, 1996, 318, 167 CrossRef CAS .
  15. T. Fang, M. J. McGrath, D. Diamond and M. R. Smyth, Anal. Chim. Acta, 1995, 305, 347 CrossRef CAS .
  16. M. J. McGrath, T. Fang, D. Diamond and M. R. Smyth, Anal. Lett., 1995, 28(4), 685 CAS .
  17. O. Niwa, H. Tabei, B. P. Solomon, F. Xie and P. T. Kissenger, J. Chromatogr. B, 1995, 670, 21 CrossRef CAS .
  18. D. G. Sanderson and L. B. Anderson, Anal. Chem., 1985, 57, 2388 CrossRef CAS .
  19. O. Niwa, Electroanalysis, 1995, 7, 606 CAS .
  20. T. H. Brearly, A. K. Dishi and P. R. Fielden, Anal. Proc., 1989, 26, 389 Search PubMed .
  21. J. L. Anderson, T. Y. Ou and S. Moldoveanu, J. Electroanal. Chem., 1985, 196, 213 CrossRef CAS .
  22. A. Aoki, T. Matsue and I. Uchida, Anal. Chem., 1990, 62, 2206 CrossRef CAS .
  23. W. E. van der Linden, M. Bos and A. Bos, Anal. Proc., 1989, 26, 329 RSC .
  24. J. J. R. Rohwedder and C. Pasquini, Analyst, 1998, 123, 1641 RSC .
  25. J. J. R. Rohwedder and C. Pasquini, Analyst, 1998, 123, 1861 RSC .
  26. H. Reller, E. Eisner-Kirowa and E. Gileadi, J. Eletroanal. Chem., 1982, 138, 65 Search PubMed .
  27. B. R. Scharifker, J. Electroanal. Chem., 1988, 240, 61 CrossRef CAS .
Click here to see how this site uses Cookies. View our privacy policy here.