An analytical method for the detection of methylantimony species in environmental matrices: methylantimony levels in some UK plant material

(Note: The full text of this document is currently only available in the PDF Version )

P. J. Craig,*, S. N. Forster, D. Miller and R. O. Jenkins


Abstract

We report, using sodium borohydride (NaBH4) derivatizing agent with purge and trap quartz furnace atomic absorption spectrometry (QF-AAS), a method for the detection of methylantimony compounds from environmental matrices and samples. The generation of trimethylantimony as a standard compound has also been examined using (CH3)3SbCl2. This method has been reported previously to produce not only (CH3)3Sb but mixtures of (CH3)2SbH, CH3SbH2 and SbH3 when solutions of (CH3)3SbCl2 were derivatized. Rigorous exclusion of oxygen combined with rapid purging of reduced analytes into a cold trap has reduced these by-products to undetectable levels. These results are of importance in view of the increasing importance of the role of organoantimony species in the natural environment, which depends on the reliability of speciation produced by the hydride generation method. Levels of methylantimony found in some UK plant samples are in the 100–200 ng g–1 range. This is the first report of methylantimony species from the UK natural environment.


References

  1. Organometallic Compounds in the Environment, ed. P. J. Craig, Longman, London, 1986 Search PubMed.
  2. W. R. Cullen and K. J. Reimer, Chem. Rev., 1989, 89, 713 CrossRef.
  3. F. Challenger, Chem. Rev., 1945, 36, 315 CrossRef CAS.
  4. G. E. Parris and F. E. Brinkmann, Environ. Sci. Technol., 1977, 10, 1128.
  5. Environmental Analysis using Chromatography Interfaced withAtomic Spectroscopy, ed. R. M. Harrison and S. Rapsomanikis, Ellis Horwood, Chichester, 1989, pp. 259–297 Search PubMed.
  6. R. Ritsema, F. M. Martin and P. H. Quera, in Quality Assurance for Environmental Analysis, ed. Ph. Quevauviller, E. A. Maier and B. Griepink, Elsevier, Amsterdam, 1995, pp. 739–799 Search PubMed.
  7. M. O. Andreae, J. F. Asmode, P. Foster and L. Van't Dack, Anal. Chem., 1981, 53, 1766 CrossRef CAS.
  8. M. O. Andreae and P. N. Froelich, Tellus, Ser. B., 1984, 36, 101 Search PubMed.
  9. M. Dodd, S. L. Grundy, K. J. Reimer and W. R. Cullen, Appl. Organomet. Chem., 1992, 6, 207 CrossRef CAS.
  10. M. Dodd, S. A. Pergantis, W. R. Cullen, H. Li, G. K. Eigendorf and K. J. Reimer, Analyst, 1996, 121, 223 RSC.
  11. I. Koch, J. Feldmann, J. Lintschinger, S. V. Serves and W. R. Cullen, Appl. Organomet. Chem., 1998, 12, 129 CrossRef CAS.
  12. R. O. Jenkins, P. J. Craig, K. J. Irgolic, W. Goessler, D. P. Miller and N. Ostah, Environ. Sci. Technol., 1998, 32, 882 CrossRef CAS.
  13. R. O. Jenkins, P. J. Craig, D. P. Miller, L. C. A. M. Stoop, N. Ostah and T.-A. Morris, Appl. Organomet. Chem., 1998, 12, 449 CrossRef CAS.
  14. P. J. Craig, R. J. Dewick and J. T. Van Elteren, Fresenius' J. Anal.Chem., 1996, 351, 467 CrossRef CAS.
  15. G. T. Morgan and G. R. Davies, Proc. Royal Soc., Ser. A, 1926, 523 Search PubMed.
  16. G. O. Doak, G. G. Long and M. E. Key, Inorg. Synth., 1967, 9, 92 CAS.
  17. D. Kuehnelt, W. Goessler and K. Irgolic, Appl. Organomet. Chem., 1997, 11, 289 CrossRef CAS.
  18. P. Andrewes, W. R. Cullen, J. Feldmann, I. Koch, E. Polishchunk and K. J. Reimer, Appl. Organomet. Chem., 1998, 12, 827 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.