Modified gas-permeable silicone rubber membranes for covalent immobilisation of enzymes and their use in biosensor development

(Note: The full text of this document is currently only available in the PDF Version )

R. Schüler, M. Wittkampf and G.-C. Chemnitius


Abstract

Novel enzyme membranes are introduced. Modified polymeric gas-permeable layers were developed enabling biological components which have available reactive groups (–NH2, –OH, –SH, –COOH) to couple covalently on to their surfaces. Therefore, gas-permeable two component room temperature vulcanising (2K-RTV) silicone rubber was modified using additional cross-linking agents. Triethoxysilanes with functional groups on their side chains such as epoxy or amino groups were used. A special attribute of the resulting gas-permeable membranes is that their formation and modification occur simultaneously during one reaction step. IR spectroscopy was used to observe the changes in the polymeric structure due to the reaction with the additional cross-linking agents. Sensors equipped with these layers are suitable to measure dissolved gases such as O2, CO2 and NH3 consumed or produced by enzymes converting their substrates. Determination of glucose, a well investigated enzymatic detection process, was chosen to demonstrate the applicability of the enzyme immobilisation. Glucose oxidase was immobilised on the membranes and glucose was detected by amperometric measurement of oxygen consumption. It is expected that this immobilisation method will also be useful for miniaturised planar biosensors.


References

  1. F. Scheller and F. Schubert, Biosensoren,Birkhäuser Verlag ,Basle, 1989 Search PubMed.
  2. P. Manowitz, P. W. Stoecker and A. M. Yacynych, Biosens. Bioelectron., 1995, 10, 359 CrossRef CAS.
  3. R. Vaidya, P. Atanasov and E. Wilkins, Med. Eng. Phys., 1995, 17, 416 CrossRef CAS.
  4. H. Frebel, G.-C. Chemnitius, K. Cammann, R. Kakerow, M. Rospert and W. Mokwa, Sens. Actuators B, 1997, 43, 87 CrossRef.
  5. S. A. Emr and A. M. Yacynych, Electroanalysis, 1995, 7, 913 CAS.
  6. L. C. Clark Jr. and C. Lyons, Ann. N.Y. Acad. Sci., 1962, 102, 29 CAS.
  7. D. P. NewmanUS Pat., 4 073 713, 1976 Search PubMed.
  8. S. L. Xie, E. Wilkins and P. Atanasov, Sens. Actuators B, 1994, 17, 133 CrossRef.
  9. S. Yang, P. Atanasov and E. Wilkins, Ann. Biomed. Eng., 1995, 23, 833 CAS.
  10. S. Gamburzev, P. Atanasov and E. Wilkins, Sens. Actuators B, 1996, 30, 179 CrossRef.
  11. L. Stancik, L. Macholan and F. Scheller, Electroanalysis, 1995, 7, 649 CAS.
  12. C. Tranh-Minh and G. Broun, Anal. Chem., 1975, 47, 1359 CrossRef.
  13. C. R. Tillyer and P. T. Gobin, Biosens. Bioelectron., 1991, 6, 569 CrossRef CAS.
  14. L. Doretti, D. Ferrara, P. Gattolin and S. Lora, Biosens. Bioelectron., 1996, 11, 365 CrossRef CAS.
  15. S. D. Haemmerli, A. A. Suleiman and G. G. Guilbault, Anal. Biochem., 1990, 191, 106 CAS.
  16. D. J. Tarnowski, E. J. Bekos and C. Korzeniewski, Anal. Chem., 1995, 67, 1546 CrossRef CAS.
  17. S. Turmanova, A. Trifonov, O. Kalaijiev and G. Kostov, J. Membr. Sci., 1997, 127, 1 CrossRef CAS.
  18. M. Goto, Jpn. Pat., 02061549, 1990 Search PubMed.
  19. M. Hesse, H. Meier and B. Zeeh, Spektroskopische Methoden in der Organischen Chemie, Georg Thieme, Stuttgart, 1991 Search PubMed.
  20. E. P. Plueddemann, Compos. Mater., 1974, 6, 6 Search PubMed.
  21. C. Chiang, H. Ishida and J. L. Koenig, J. Colloid Interface Sci., 1980, 74, 396 CrossRef CAS.
  22. P. R. Moses, L. M. Wier, J. C. Lennox, H. O. Tinklea, J. R. Lenhard and R. W. Murray, Anal. Chem., 1977, 50, 576.
  23. C. Loechel, G.-C. Chemnitius, M. Borchardt and K. Cammann, Z. Lebensm.-Unters. Forsch., 1998, 207, 381 Search PubMed.
  24. W. von GentzkowH.-D. FeuchtH. FormanekG. WannerEur. P. Appl., 0562372, 1993 Search PubMed.
  25. M. Wittkampf, G.-C. Chemnitius, K. Cammann, M. Rospert and W. Mokwa, Sens. Actuators B, 1997, 43, 40 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.