Experimental demonstration and simulation of electrochemical non-linear responses to glucose and its interferents with an amperometric sensor

(Note: The full text of this document is currently only available in the PDF Version )

Satoshi Nakata, Hironori Yabuuchi, Rie Takitani, Yoko Hirata and Yoshitaka Masuda


Abstract

A novel sensing system based on the multi-dimensional information contained in a dynamic non-linear response is proposed. A sinusoidal potential was applied to an amperometric-type glucose sensor and the resulting current of the sensor was analyzed by fast Fourier transformation (FFT). The amplitudes of the higher harmonics of FFT characterize the non-linear properties of the response. The amplitudes of the higher harmonics of FFT exhibit characteristic changes which depend on the concentration and the kinetics of the reactions of glucose and its interferents at the sensor surface. The essential features of the current–potential curve were reproduced by a computer simulation based on the kinetics of electrochemical reactions.


References

  1. Biosensors: Fundamentals and Applications, ed. A. P. F. Turner, I. Karube and G. S. Wilson, Oxford University Press, Oxford, 1987 Search PubMed.
  2. R. P. Buck, W. E. Hatfield, M. Umaña and E. F. Bowden, in Biosensor Technology: Fundamentals and Application, Marcel Dekker, New York, 1990 Search PubMed.
  3. F. Scheller and F. Schbert, in Biosensors, Elsevier, Amsterdam, 1992 Search PubMed.
  4. D. G. Buerk, Biosensors. Theory and Applications, Technomic Publishing, Lancaster, PA, 1993 Search PubMed.
  5. R. Maidan and A. Heller, J. Am. Chem. Soc., 1991, 113, 9003 CrossRef CAS.
  6. T. Ohsaka, Y. Yamaguchi and N. Oyama, Bull. Chem. Soc. Jpn., 1990, 63, 2646 CAS.
  7. L. C. Guerente, A. Deronzier, P. Mailley and J. C. Moutet, Anal. Chim. Acta, 1994, 289, 143 CrossRef.
  8. N. Oyama, T. Osaka, M. Mizunuma and M. Kobayashi, Anal. Chem., 1988, 60, 2534 CrossRef CAS.
  9. H. Liu and J. Deng, Biosens. Bioelectron., 1996, 11, 103 CrossRef CAS.
  10. A. E. G. Cass, G. Davis, G. D. Francis, H. A. O. Hill, W. J. Aston, I. J. Higgins, E. V. Plotkin, L. D. L. Scott and A. P. F. Turner, Anal. Chem., 1984, 56, 667 CrossRef CAS.
  11. A. L. Crumbliss, H. A. O. Hill and D. J. Page, J. Electroanal. Chem., 1986, 206, 327 CrossRef CAS.
  12. I. Willner and A. Riklin, Anal. Chem., 1994, 66, 1535 CrossRef CAS.
  13. J. Svorc, S. Miertus, J. Katrlik and M. Stredansky, Anal. Chem., 1997, 69, 2086 CrossRef CAS.
  14. S. Nakata, N. Kido, M. Hayashi, M. Hara, H. Sasabe, T. Sugawara and T. Matsuda, Biophys. Chem., 1996, 62, 63 CrossRef.
  15. S. Nakata, S. Akakabe, M. Nakasuji and K. Yoshikawa, Anal. Chem., 1996, 68, 2067 CrossRef CAS.
  16. S. Nakata, E. Ozaki and N. Ojima, Anal. Chim. Acta, 1998, 361, 93 CrossRef CAS.
  17. S. Nakata, Y. Hirata, R. Takitani and K. Yoshikawa, Chem. Lett., 1998, 401 CAS.
  18. S. Nakata, R. Takitani and Y. Hirata, Anal. Chem., 1998, 70, 4304 CrossRef CAS.
  19. A. J. Bard and L. R. Faulkner, Electrochemical Methods, Wiley, New York, 1980 Search PubMed.
  20. D. E. Smith, Anal. Chem., 1963, 35, 610 CrossRef CAS.
  21. D. E. Smith and T. G. McCord, Anal. Chem., 1968, 40, 474 CrossRef CAS.
  22. A. V. Sorkirko and F. H. Bark, Electrochim. Acta, 1995, 40, 1983 CrossRef.
  23. T. Tatsuma and T. Watanabe, Anal. Chem., 1992, 64, 625 and 630 CrossRef CAS.
  24. B. R. Eggins, Biosensors: an Introduction, Wiley and Teubner, 1996 Search PubMed.
  25. U. E. Sprichiger-Keller, Chemical Sensors and Biosensors for Medical and Biological Applications, Wiley-VCH, Weinheim, 1998 Search PubMed.
  26. M. Jänchen, G. Walzel, B. Neef, B. Wolf, F. Scheller, M. Kühn, D. Pfeiffer, W. Sojka and W. Jaross, Biomed. Biochim. Acta, 1983, 42, 1055 CAS.
  27. M. Nanjo and G. G. Guilbault, Anal. Chem., 1974, 46, 1769 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.