Laser photoacoustic spectrometry and its application for simulation of air pollution in a wind tunnel

(Note: The full text of this document is currently only available in the PDF Version )

Z. Zelinger, S. Civiš and Z. Jaňour


Abstract

Laser photoacoustic spectrometry and a line permeation pollution source were used in a study of the dispersion of pollution in an urban agglomerate using simulation in a wind tunnel. Applications of this measuring technique utilize the high sensitivity and broad dynamic range (3 orders of magnitude in this case) of the photoacoustic detection method. The minimum detected absorbance in the photoacoustic detection method employed in this work was at the level of ≅ 4.3 × 10–6 (≅ 8 µg m–3 CH3OH). The effectiveness and flexibility of the permeation method for generation of various concentrations of gases were verified for simulation of emission pollution sources in a wind tunnel. The line permeation pollution source developed in this work, with a concentration flux of (8.3 × 10–5 ± 2 × 10–6) g s–1 at 20 °C, generated a concentration level in the model used from a background value of 80–90 µg m–3 up to values of ≅ 1000 µg m–3 of methanol. A simple model street canyon together with the pollution source was employed to carry out a number of measurements of spatial profiles. The dispersion of the pollutant was studied at the bottom and on the walls of the street canyon together with the concentration variation with changes in the wind speed. The laboratory model was used to demonstrate the differences in ventilation of the street canyon.


References

  1. Encyclopedia of Environmental Analysis and Remediation, ed. R. A. Meyers, John Wiley, New York, 1998 Search PubMed .
  2. R. J. Adrian, Annu. Rev. Fluid Mech., 1991, 23, 261 Search PubMed .
  3. M. Pavageau, Concentration Fluctuations in Urban Street Canyons, Meteorologisches Institut der Hamburg, Universität, Hamburg, 1996 Search PubMed .
  4. M. W. Sigrist, in Encyclopedia of Environmental Analysis and Remediation, ed. R. A. Meyers, John Wiley, New York, 1998, p. 84 Search PubMed .
  5. M. W. Sigrist, in Air Monitoring by Spestroscopic Techniques, ed. M. W. Sigrist, Chemical Analysis Series, John Wiley, New York, 1994, vol. 127, p. 163 Search PubMed .
  6. C. K. N. Patel, Science, 1978, 202, 157 .
  7. M. W. Sigrist, S. Bernegger and P. L. Meyer, in Photoacoustic, Photothermal and Photochemical Processes in Gases ed. P. Hess, Top. Curr. Phys., Springer-Verlag, Berlin, 1989, vol. 46, ch. 7 Search PubMed .
  8. A. G. Bell, Am. J. Sci., 1880, 20, 305 Search PubMed .
  9. M. W. Sigrist, Analyst, 1994, 119, 525 RSC .
  10. M. W. Sigrist, S. Bernegger and P. L. Mayer, Infrared Phys. Technol., 1989, 29, 805 CrossRef CAS .
  11. Z. Zelinger, Z. Papousková, M. Jakoubková and P. Engst, Coll. Czech. Chem. Commun., 1988, 53, 749 CAS .
  12. V. Steiner, P. Engst, Z. Zelinger and M. Horák, Coll. Czech. Chem. Commun., 1989, 54, 2667 CAS .
  13. Z. Zelinger, I. Jančík and P. Engst, Appl. Opt., 1992, 31, 6974 .
  14. Z. Jaňnour, A new atmospheric boundary layer wind tunnel at the Institute of Thermomechanics- EUROMECH Col. 338, Bologna, 1995 Search PubMed .
  15. A. E. O'Keefe and G. C. Ortman, Anal. Chem., 1966, 38, 760 CrossRef CAS .
  16. M. L. Stellmack and K. W. Street Jr., Anal. Lett., 1983, 16(A2), 77 CAS .
  17. Z. Zelinger, P. Engst, Z. Papoušková and M. Jakoubková, Springer Ser. Opt. Sci., 1988, 58, 131 Search PubMed .
  18. I. Tanarro and J. Campos, J. Phys. E: Sci. Instrum., 1986, 19, 125 CrossRef CAS .
  19. P. A. Probst and B. Collet, Rev. Sci. Instrum., 1985, 56, 466 CrossRef .
  20. G. L. Loper, A. R. Calloway, M. A. Stamps and J. A. Gelbwachs, Appl. Opt., 1980, 19, 2726 CAS .
  21. P. L. Meyer and M. W. Sigrist, Rev. Sci. Instrum., 1990, 61, 1779 CrossRef CAS .
Click here to see how this site uses Cookies. View our privacy policy here.